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Chapter 1

Introduction

An artificial medium is basically a macroscopic analog of a real medium, and typically
consists of a large number of scattering objects distributed (more or less) uniformly
in some host or background medium. The scattering objects affect the behavior of
electric and magnetic fields inside the artificial medium. For example, a general plane
wave in an artificial medium propagates with an effective wavenumber different than
that of the host material or the scattering objects. As a result, artificial media can
be characterized by an effective permittivity and effective permeability. In general,
artificial media are anisotropic, and the constitutive parameters are tensor quantities.

When a plane wave propagates through an artificial medium, currents are induced
in (or on) the scattering objects. As shown in Figure 1.1, these currents can be
viewed as macroscopic current moments, analogous to the microscopic dipole moments
induced in the molecules of an actual dielectric [1). The effect of the macroscopic
current moments is to produce a net electric and magnetic current moment per unit
volume, and thus the artificial medium has some complex effective permittivity and
permeability different from the host medium.

The complex effective constitutive parameters of the artificial medium are a func-
tion of frequency, the electrical size, shape, spacing, and orientation of the scattering
objects, and the constitutive parameters of both the host medium and the scattering
objects. Also, in contrast to real media, the constitutive parameters can be a function
of the direction of propagation through the artificial medium. By properly choosing
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Figure 1.1: The artificial dielectric model.




the geometry and composition, it may be possible to design an artificial medium of
desired permittivity, permeability and loss tangent.

This dissertation presents an integral equation and periodic method of moments
(PMM) [2, 3, 4] solution to the problem of determining the effective permittivity
and permeabil.itj' of an artificial medium. The artificial medium is composed of a
3D periodic array of identical arbitrarily-shaped thin conductive or dielectric wire
objects.

The solution proceeds as follows. First, an integral equation is formulated for a
plane wave of unknown wavenumber propagating in an artificial medium of infinite
extent in all three dimensions. Next, this integral equation is solved by the PMM,
yielding the complex effective wavenumber of the plane wave, the eigenfunction cur-
rents in the wire objects, and the eigenfunction fields in the artificial medium. From
these quantities, the effective constitutive parameters of the artificial medium are
determined.

Three methods are formulated for determining the effective constitutive parame-
ters. The first method determines what constitutive parameters a real medium must
have to produce the same effective wavenumber solved for in the PMM solution. It
is shown that this method applies only in certain simple geometries. The second and
third methods are more general, and are based on the assumption that current and
field quantities inside the artificial medium can be viewed in an average sense. The
second method enforces the constitutive relationship equations using the current mo-
ments and eigenfunction fields averaged over a lattice cell. The third method enforces
Maxwell’s source-free equations (for a plane wave) applied to the eigenfunction fields
averaged over a lattice cell.

The concept of artificial media was first introduced by Kock [5] in 1948 as applied
to the design of microwave lenses. The problem was to produce a lightweight material
with suitable index of refraction at microwave frequencies. Kock presented analysis of
artificial dielectrics consisting of cubic arrays of spheres, discs and metallic strips. His
preliminary work did not include interaction between the ob ject.s, and thus the objects
and spacing must be electrically small with the objects small in terms of the spacing.




Other applications include modeling a plasma as an artificial dielectric by Rotman [6]
in the study of radio wave propagation. Bahl and Gupta (7] designed a leaky-wave
antenna using the results of Brown [8]. King, Thiel and Park [9] inserted pins in a
ground plane to synthesize a given surface reactance. Sihvola [10] modeled mixtures
of rain and hail as artificial dielectrics in the analysis of microwave attenuation. A
recent application of an artificial dielectric mixture is in the microwave welding of
polymers by Wu and Benatar [11], where a lossy dielectric of desired conductivity is
produced by the proper mixture of HCl doped polyaniline particles in a polyethylene
host.

Arrays of spherical objects have been further treated by Lewin [12] where he
accounts for the effects of plane wave scattering by nearby metal spheres, and by
Corkum [13] where he uses the Clausius-Massotti equation (1, Sec. 2.8.1] suggested
by Kock. Corkum’s analysis accounts the permeability of such an array, as well as
the permittivity of a dielectric sphere array. Arrays of thin conducting disks have also
received considerable treatment. For the magnetic field normal to the disks, Estrin
[14] modeled the current on an isolated disk as a magnetic dipole and solved for the
permeability in the case where the dﬁh are far enough apart to neglect interaction.
Estrin [15] also considered the anisotropic properties of a 3D array of disks in his
analysis of oblique incident waves on such a medium. Brown and Jackson [16)] include
multipole interaction terms to provide a solution accurate for closely packed disks.
Further analysis of the metallic strip artificial dielectric, consisting of 2D metallic
strips oriented transverse to both the direction of propagation and the electric field,
is given by Brown [17] in which he formulates a more accurate theory based on
transmission line theory. Also, Kolettis and Collin [18] presented a waveguide modal
analysis for general directions of propagation through this strip media. Experimental
results for the metallic strip artificial dielectric are presented by Kolettis and Collin
(18], and Cohn [19].

Collin [20, Ch. 12] presents an extensive evaluation of artificial dielectrics, and
his work serves as a good summary of much of the early work d(;ne in the area. He

presents a simple static Lorentz solution which, only accounts for dipole interactions




between objects, and thus, the objects must be electrically closely spaced and small in
relative to the spacing. To account for larger objects, multipole terms can be included
in the expressions for the fields.

The PMM solution presented in this dissertation was first suggested and utilized
by Blanchard and Newman [21, 22]. They analyzed a 2D array of dielectric rods and
a 3D array of straight perfect electric conducting dipoles. The current work included
here is an extension of this preliminary work in several important ways. It analyzes
periodic arrays of arbitrary conductive or dielectric wire objects, and allows for lossy
materials. Also, methods are formulated to determine the anisotropic properties of
artificial media, i.e., the effective permittivity and permeability tensors.

The theory of the given solution to artificial media is presented in Chapter 2.
This theory includes the derivation of the integral equation for a plane wave propa-
gating in the artificial medium. The periodic method of moments (PMM) solution to
the integral equation is presented, with specialization to the arbitrarily-shaped thin
wire objects arranged in the 3D periodic lattice structure. This solution yields the
complex wavenumber, as well as the eigenfunction currents and fields, of the plane
wave propagating in the artificial media. A discussion of how these quantities are
used to determine the effective constitutive parameters of artificial media is included.
Finally, expressions for the fields of a 2D planar array and a 3D volume array of
current elements are derived. These field expressions provide the basis for the PMM
solution and the eigenfunction fields in the artificial medium.

Chapter 3 presents the evaluation of the MM impedance matrix, and involves the
computation of several distinct terms. Chapter 4 presents the evaluation of the aver-
age eigenfunction electric and magnetic fields of the plane wave. The eigenfunction
fields are spoken of in an average sense, i.e., they are averaged over the center lattice
cell. Chapter 5 presents results obtained from the solution presented in this disserta-
tion. These results are intended to illustrate the methods and techniques, as well as to
present some interesting points about artificial media. Chapter 6 presents the usage
of the computer program ADWIRS, which was developed in FORTRAN to analyze
an artificial medium composed of a 3D periodic array of identical arbitrarily-shaped




thin conductive or dielectric wire objects arranged in a homogeneous host medium.
The program ADWIRS yields the solution of the plane wave propagating in the
artificial dielectric, including the eigenfunction currents and fields, and the electric
and magnetic dipole moments.

Many of the mathematical details of the PMM solution are given in appendices
for clarity and to improve the readability of this dissertation. Appendix H presents
a solution to the problem of determining the effective permittivity of an artifici-" 4i-
electric composed of a 3D periodic array of small identical dielectric material sp.

The theory is similar to that presented in Chapter 2, but it is not as general and
complete. However, the implementation of the method is quite different, due to the
scattering objects being spheres instead of wire objects. Appendix H is intended
to be a self-contained document, with few references to material elsewhere in this

dissertation. 4




Chapter 2

Theory

This chapter presents the integral equation and PMM solution for a plane wave prop-
agating through an artificial medium composed of thin conductive or dielectric wire
objects arranged in a periodic lattice. This solution yields the complex wavenum-
ber of the plane wave that can propagate without excitation through the artificial
medium, i.e., the eigenfunction solution for the artificial medium. The solution also
yields the shape of the eigenfunction currents in the scattering objects, from which
the eigenfunction fields can be determined. Throughout this paper, all fields and
currents are assumed to be time harmonic with the e** time dependence suppressed.

Two methods are presented for determining the effective permittivity and perme-
ability tensors of the artificial medium. The polarization method is based on enforcing
the constitutive relationship equations in an average sense in the artificial medium,
and uses the average eigenfunction currents and fields per unit volume. The Mazwell’s
equations method is based on the assumption that Maxwell’s equations for the plane
wave are satisfied in an average sense in the artificial medium. This method uses the
average cigenfunction fields per unit volume and the complex vector wavenumber of
the plane wave.

As shown in Figure 2.1, the geometry of the artificial medium consists of a 3D triple
periodic array of wire objects located in a homogeneous and isotropic host medium.
The homogeneous host medium has constitutive parameters (s, €o), wavelength Ao,
wavenumber ko, and is not necessarily free space and may be lossy. The wire objects
(shown as V—dipoles in the Figure 2.1) may be composed of an arbitrary conductive




or dielectric material. The wires have radius a, constitutive parameters (uo, ), and
wavenumber k,. The complex permittivity of the wire objects, ¢, is given by

.o .
q=e,,eo—1;l=q,¢o(l-1 tan §;) (2.1)

where o, is the conductivity of the wire object (in 2!/ meter) and tan §, is the loes
tangent of the wire objects. The wire objects are arranged in a lattice cell structure
with spacings d,,d, and d,, in the i, ¥ and W directions, respectively. This lattice
cell structure need not be rectangular, and its unit vectors are

i = X,

v = vy, X+v,¥ and

¥ = w,k+w,§+uw,i

The elements are referenced by/the index Q = (4., ju, k) Where —00 < (3u, v, k) <
0o. The reference or center wire object is centered at the origin and is indexed by
Q =0=(0,0,0). Also,let AQ = i,d, i + j.dy ¥ + kydy, W be the position vector from
the origin to the center of lattice cell Q.

Following the general methods presented by Blanchard and Newman (21, 22], the
effective parameters of the artificial medium are determined by first assuming that
a plane wave of unknown wavenumber is propagating through the medium. If the
plane wave is propagating in the i, direction, assumed to be known, then it will be
of the form

e iR, (2.2)

where k. = k. iz = kX + key¥ + ke.# is the unknown complex vector wavenumber
(or wave-vector), and R = z% + y§ + 2% is the position vector. For a given direction
@iz, it is desired to find k, such that this plane wave satisfies Maxwell’s source free
equations and all of the boundary conditions in the artificial medium, corresponding
to the normal mode of propagation for the artificial medium, i.c., the eigenfunction
solution for the artificial medium. Once the wavenumber k. is known, then the shape
of the eigenfunction currents in the material wire objects can be determined. From
these eigenfunction currents, the eigenfunction fields can then be found.
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Figure 2.1: The 3D volume lattice geometry.




For plane wave propagation in a given direction through a homogeneous aniso-
tropic medium, it is known that there are two distinct eigenfunction modes of prop-
agation [23, Sec. 4.25), [24, Sec. 14.2.2]. Each mode of propagation corresponds to
a distinct complex wavenumber and polarization of the plane wave. Also, for homo-
geneous anisotropic media, the nine elements of the permittivity and permeability
tensors are independent of the direction of propagation through the medium [23, Ch.
4], (24, Sec. 14.1).

It will be shown that the theory of two distinct modes of plane wave propage-
tion extends to plane wave propagation through artificial media. Thus, for & given
direction of propagation ii; through an artificial medium, there are two values of
k. corresponding to the two eigenfunction solutions for the artificial medium. Each
value of k. corresponds to a distinct polarization of the plane wave, and to distinct
cigenfunction currents on the wire objects, and hence, to distinct eigenfunction fields
in the artificial medium. Also, it will be shown that the permittivity and permeability
tensors typically will have only a slight variation on the direction of propagation in an
artificial medium. One possible exception is when the eigenfunction current shapes
are a strong function of the direction of propagation.

2.1 The Integral Equation

In formulating the integral equation for the artificial medium, as shown in Figure 2.2,
the volume equivalence theorem is used to replace the wire objects by the host medium
and the equivalent electric volume polarization currents [1, Sec. 7.7]

J = jw(e; ~ &)Et, (2.3)

where E* is the total electric field inside the wire objects. Since the permeabilities of
the host medium and the wire objects are identical, there are no magnetic currents in
the wire objects. In the limiting case where the wires become perfectly conducting,
the volume current J approaches a surface current on the wire surfaces. The current

10




J exists in (or on) each and every wire object, and is written as
J=) 19, (2.4)
Q

where JQ is the current in wire object Q, and the summation is over all values of
Q, i.e., —00 < (%uyJu,fw) < 00. Since we seek a solution to Maxwell’s source free
equations, there are no impressed currents, and thus E! is the electric field of J
radiating in the homogeneous host medium. Equation (2.3) can be rearranged as the

homogeneous equation

_E*+m:;"-_-?)=o in each wire object Q, (2.5)

and is to be solved for the complex wavenumber k., and the current in the center or
Q = 0 wire object, by the P’IIVIM.

Due to the periodic nature of the array of wire objects, and of the plane wave of
Equation (2.2), the current is identical in each wire object except for an amplitude
and phase change corresponding to the value of the plane wave at the center of the
lattice cell. In other words, the current in wire object Q differs from the current in

the center wire object by the complex multiplier
CQ = ¢k-AQ (2.6)

As a result, the only unknowns are k. and the current in the center wire object.

2.2 PMM Solution of the Integral Equation

Equation (2.5) will be solved by the periodic moment method (PMM) (2, 3, 4]. The
first step in the PMM solution is to expand the unknown current J as

N
J= %:JQ ~ % c® 21 1,38, (2.7)

where the JQ are N linearly independent expansion functions for the current in wire
object Q, and the I, are N unknown expansion coeflicients, with » = 1,2,...,N.

11
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Figure 2.2: The equivalent 3D volume lattice geometry after application of the volume

equivalence theorem.
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Note that for a given n, all the JQ are identical in shape, with the only difference
being that a given JQ is defined only on wire object Q, i.e.,

J*R)=IYR - AQ). (2.8)

Due to the periodic nature of the problem, it is only necessary to enforce Equa-
tion (2.5) over V9, the volume of the center wire object.

Next, define N linearly independent weighting functions in the center wire object,
denoted as W,,, with m = 1,2,...,N. Substituting J of Equation (2.7) into Equa-
tion (2.5), and taking the inner product of the result with the N weighting functions,

reduces Equation (2.5) to an order N matrix equation which can be written as
[Z+AZ)I=[2]I=0. (2.9)

Here, [2] = [Z + AZ] is the 6rder N impedance matrix and [ is the length N solution
vector containing the I, expansion coefficients of Equation (2.7). The impedance

matrix elements are given by (m,n = 1,2,...,N)
Zma(ke) =3 €C%28 = ¥ C® / ES. W, dv (2.10)

Q qQ ™
1

jW(Cl - ef)) Vin
where EQ is the electric field of JQ, the n** expansion function in wire object Q,

AZpp = J°. W, dv, (2.11)

radiating in the homogeneous host medium. The integration is over V,,, the volume
of weighting function m. The AZ,,, terms do not depend on k., but the Z,,, terms
do through their dependence upon CQ. Note that the AZ,,, terms are non—zero only
when the expansion functions JQ are in the center Q = 0 wire object. Also, the
AZ,, terms vanish when the wires are perfectly conducting, since |e;] — 0. The
impedance matrix terms, Z,,(k.) and AZy,, are evaluated in Chapter 3, for the
piecewise sinusoidal (PWS) material wire expansion and weighting functions defined
in Section 2.2.1.

The homogeneous matrix Equation (2.9) will have a non—trivial solution only if
the determinant of the impedance matrix is sero. Thus, k, is found by solving the
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fundamental equation
|Z(ke) + AZ| = |Z| =0, (2.12)

usually on an iterative basis.

2.2.1 The MM Expansion and Weighting Functions for Ma-
terial Wires

In this section, MM expansion and weighting functions suitable for thin conductive
or dielectric wires are defined. The expansion functions used are those employed by
Newman [25], which incorporate known behavioral variations of the thin material
wires. As shown in Figure 2.3, a dipole expansion function n consists of two monopole
current segments. Monopole nj is oriented along the z,;-axis, with zero current
at 2,; = 0 rising to unity current at z,; = d,;. The polarity of the current, on a
monopole basis, always flows froam the zero current end toward the unity current end.
However, dipole expansion function n has polarity such that current flows from the
j = 1 monopole to the j = 2 monopole. Current is continuous, and of value unity,
across the terminals of the dipole. The terminals of the dipole is where monopole
1 intersects with monopole 2, i.e., the point z,; = d,j. In this manner, expansion

function n is written as (n = 1,2,...,N)

Ip = Jnl(Pnl,znl) - an(Pnzy zn2) (2'13)
where, for j = 1,2
Jni(Pnis 2n3) = Bnj Jn;j(Pnjs 2n;) + Pnj Jni(Pnss Zn;) (2.14)

with p,; and z,; being the local radial and axial coordinates for monopole segment
nj.

The expansion function contains an axial and a radial component corresponding
to the transverse magnetic (TM) to z fields inside the thin material wire [25]. These

components are written as

J:;’(PM'; zn.r') = C Jo(kp pn;) Faj(k: zn;) and (2.15)
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-C
Jni(Pnjs 2nj) = N Ji(k, pn;) Fpj(ks 2a5) (2.16)

where C is a normalization constani, J; is a Bessel function of order i (i = 0,1), the

prime ' denotes differentiation with respect to z,;, and from the wave equation,
2 12
k2 + k] =K.

The normalization constant C is chosen such that J%.(pnj,2n;) has unit terminal

current, i.e.,

2x pa -1 k
C= [ /0 /o Jo(K, Pnj) Pnj dpn; d¢] = m- (2.17)

Note that the radial component J7; is dependent upon the axial component J3;, and
thus there is only one unknown current. The function F,;(k, z,;) defines the axial
variation of the expansion functions, as explained next.

As shown in Figure 2.3, dipole expansion functions are always zero at the endpoints
but rise to unity at the terminals. Since the current vanishes at the endpoints of
a perfectly conducting wire, these expansion functions are used for modeling the
current on perfectly conducting wire objects. They are also used for modeling the
current away from wire endpoints on imperfect conductive or dielectric wires objects.
The axial variation of a dipole expansion function consists of two monopole axial
variations. Choosing k, = ko, the monopole axial variation is

::'—,;f:z—;:% if 0 < zp5 < dpj
Foj(ks znj) = (2.18)

0 otherwise.

For imperfect conductive or dielectric wire objects, or when wire objects physically
touch across adjacent cells, the current will not necessarily vanish at the wire object
endpoints. To model such a current, monopole expansion functions are used. A
monopole expansion function consists of only the 7 = 1 current segment. In analogy

to Equation (2.13), monopole expansion function n is written as

Jn = Jul(ﬂnl ’ znl), (2‘19)
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Direction
of current flow
for dipole expansion
function n.

Figure 2.3: A typical dipole MM expansion function.
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and the axial and radial variations remain the same as for the dipole expansion
functions.

The weighting functions contain only an axial component and have axial varia-
tion the same as the expansion functions. However, the radial variation is constant.

Therefore, a dipole weighting function is defined as

1 -
wm = "r‘z' [ iml le(kz zml) — &m2 sz(kx zmz) ] (2'20)
and a monopole weighting function is defined as
1 .
wm = 'r—g Z,n1 Fm](k, zml) (2.21)

form = 1,2,...,N.

2.2.2 Evaluation of the Eigzafunction Currents

Assume that a value of k. has been found such that the fundamental Equation (2.12)
is satisfied. Now it is desired to determine the eigenfunction currents in the wire
objects. The MM matrix equation for the eigenfunction current in the center wire

object can be written as

A Tr 1
2, 24 - Zin L 0

Zn 2 - Zin I 0

(2.22)

| Zn 2Nz - 2un || IN)] | O
Recall that the determinant of the impedance matrix is gero, and thus this system of
equations cannot be solved for the current coefficients I in the usual manner. However,
the eigenfunction currents can be determined, to within a constant, by setting an
arbitrary non-gzero element of I to unity, and then reducing Equation (2.22) to an
order N — 1 system of equations for the remaining N — 1 current coefficients. For

example, setting the last coefficient Iy = 1, Equation (2.22) reduces to

[ 21 212 -+ ZiNa L [ -Z\N
Z Z eee Zan- I -Z
.21 .22 ‘ 2.{\! 1 .z _ .lN , (2.23)

| ZNv-10 2Nz v 2hana [ Ina1 ] | —2Naw

b
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which can be solved using standard techniques. This method yields the eigenfunction

currents on the wire objects to within a constant.

2.3 Determination of the Effective Constitutive
Parameters

This section discusses the determination of the effective permittivity and permeability
tensors, denoted by (&.,fz,.), for an anisotropic artificial medium. A discussion of the
roots k. to Equation (2.12) is included, and different approaches to evaluating (&.,f.)
are presented.

Much of the theory contained in this section follows from anisotropic media theory
as applied to crystal optics (23, Ch. 4], [24, Ch. 14]. This theory seems to apply

to the macroscopic model of artificial media, provided the arbitrary material wire -

objects are not too electricalljl large or spaced too far apart and the eigenfunction
current shape is not a strong function of the direction of propagation.

2.3.1 Discussion of the Roots k., and Polarization

The first step in determining the equivalent permittivity and permeability of the arti-
ficial medium is to determine the roots, k., to Equation (2.12). For a given direction
of propagation through an anisotropic artificial medium composed of arbitrary scat-
tering objects, there are two fundamental roots, k., to Equation (2.12) [23, Sec. 4.25],
[24, Sec. 14.2.2]. Each root corresponds to a distinct polarization of the plane wave
in the artificial medium, and its corresponding eigenfunction currents and fields.
For special geometries, the roots may be repeated roots or degenerate to the host
medium wavenumber k. = k. For example, repeated roots (two roots with the
same numerical value for k.) will occur for propagation normal to a symmetric wire
cross with equal length vertical and horizontal members. One root corresponds to
vertical polarization, and the other root corresponds to horizontal polarisation. If the
scattering object is of 2D or of 3D extent, the two roots will be different from the host
medium wavenumber. If the scattering object is of 1D extent (i.e. a linear dipole),
then there will be one root k. = kg, corresponding to a plane wave with polarization
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perpendicular to the dipole, and one root k. # ko, corresponding to polarization
parallel to the dipole.

In a real homogeneous anisotropic medium the elements of the tensor constitutive
parameters are independent of the direction of propagation [23, Ch. 4], [24, Sec. 14.1].
However, in an artificial medium, these elements may depend on the direction of prop-
agation. If the material wire objects are not too electrically large or spaced too far
apart, and the eigenfunction current shape is not strongly dependent on the direction
of propagation, then any direction-dependent variation of the tensor constitutive pa-
rameter elements should be small or negligible. However, if the eigenfunction current
shape is a strong function of the direction of propagation, then the tensor constitutive
parameter elements may also vary with the difection of propagation. |

Note that in developing Equation (2.12), the polarization of the plane wave was
not specified. Thus, when a foot of Equation (2.12) is found, the polarization is un-
known. To find the polarization one can first compute the corresponding eigenfunc-
tion currents using Equation (2.23), and then the eigenfunction electric and magnetic
fields, as presented in Chapter 4. The polarization of the electric field is taken as the
polarization corresponding to the chosen value of k.. Once the eigenfunction fields
are known, the characteristic impedance of the artificial medium, denoted ., can be
evaluated as the ratio of the electric to magnet’~ eigenfunction fields tangential to
the assumed direction of propagation. If the host medium and the scattering objects
are lossless, then k. and %, will be positive real numbers. However, if either the host
medium or the scattering objects have loss, then k. will be a complex number in the
fourth quadrant, and 7. will be a complex number in the sector +45° of the positive
real axis [26, Sec. 2-3].

Since the scattering objects in an artificial medium are typically electrically small,
one is usually interested in the eigenfunction modes with the smallest k.. However, it
is important to note that larger roots, with larger k., may exist. One manner in which
higher order roots do exist is through the periodic nature of the complex multiplier

CQ of Equation (2.6). For example, in a problem where propagation is in the &, =
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direction, CQ simplifies to
CQ = ¢ Fhilkeduns), (2.24)

Recall that CQ is the only term in the fundamental root Equation (2.12) that depends
on k.. Let k., = k.o be the smallest root to Equ‘tion (2.12), where Re(ko) > 0. It can
be seen by inspection of Equation (2.24) that if ke is & root, then so will be values
of k, where

2
g:kﬂidw‘:‘ forp=1,2,3,... (2.25)

Thus, for some geometries, there exists a periodic occurrence of roots to Equa-
tion (2.12). However, for the material presented here, the lowest order root is the
only root of interest, i.e., k. = k.o is assumed. It should be noted that higher order
roots may ezist that correspond to higher order modal eigenfunction solutions in the

artificial medium, however, no such roots have been found to this date.
'I

2.3.2 Polarization Method

Consider the determination of the dyadic effective permittivity and permeability
(€., ja.) for an anisotropic artificial medium. It is assumed that for a given geum-
etry, the two roots k., their corresponding eigenfunction currents J® on the center
element, and their eigenfunction fields averaged over the volume of the center cell
(E®,H?), have all been determined. In the limit as k, — ko, the eigenfunction cur-
rents vanish and the eigenfunction fields become identical to a plane wave in the host
medium.

The electric and magnetic dipole moment per unit volume in the center cell can

now be computed as [20, Ch. 12.5]

1
o_ 0 2 — ce. 0 ;
P =7 v/v“J dv =eXx°-E (2.26)
1 v
0 _ 0 — o™, 0 .
M —-—-—2!”/ RxJdv=x"-H (2.27)

where VO represents the region of the center cell of volume Av, and ¥° and ¥™
are the dimensionless symmetric [23, Sec. 4.24], [24, Sec. 14.1] effective electric
and magnetic susceptibility tensors, respectively, for the artificial medium. Equation
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(2.27) shows that even perfectly conducting or pure dielectric scattering objects can
have a magnetic moment, and thus an effective permeability different from the host
medium. Assuming that the usual constitutive relationships, which are valid point by
point in a real medium, hold in an average sense in an artificial medium, the average

electric and magnetic flux densities in the center cell are given by
D® = E° + P% = ¢E® + ox° - E* =&, - E® (2.28)
B? = uo(H® + M?) = po(H® + x™ -H®) = i, - H®. (2.29)
From Equations (2.28) and (2.29), the dyadic effective permittivity and permeability
are given by
é& =T+ x%e | (2.30)

B, = (I+X™)no (2.31)

4

where I is the unit dyad.
Explicitly showing Equation (2.26) relating the effective electric susceptibility to

the average electric field and the electric dipole moment per unit volume in the center

cell,
Xee Xoy Xo || E2 P}
ol x x5 || EV|=]| P (2.32)
X X Xu || E0| | P

Equation (2.32) is equivalent to three equations in the nine components of ¢, and is
the resuit of one of the two roots of Equation (2.12). The other root will produce a
dyadic equation, similar to Equation (2.32) with the same %°, but with different E°
and P®. The two dyadic equations, along with the condition that %° is symmetric,
can now be solved for the nine components of ¥°. Once ¥° is known, then €. is
determined simply from Equation (2.30). The determination of j, is parallel to that
presented for &, but uses the dyadic Equation (2.27).

2.3.3 Maxwell’s Equations Method

Another method of determining the tensor constitutive parameters of the artificial
medium follows directly from Maxwell’s equations. For this method, it is assumed
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that Maxwell’s equations apply to the average fields in the center cell of the artificial
medium. Applying the well-known source-free Maxwell’s equations to the plane wave
fields of the form assumed in Equation (2.2), it is obtained that [27, Sec. 2.3]

V xH = —jwD = k. x H® = ~wD® = —uwg, - E® (2.33)
V xE = jwB = k. x E® = wB® = wia, - H® (2.34)
V-D=0 = k.-D°=0, (2.35)

V.-B=0 = k.-B*=0 (2.36)

where the tensor constitutive relationships of Equations (2.28) and (2.29) have been
used.
Explicitly showing Equation (2.33) relating the effective wave-vector and permit-

tivity tensor to the average electric and magnetic fields per unit volume in the center
4
cell,

ke H? — k. HY | =-w| e, & ¢ || E |- (2.37)
keo H}) — key HY € ¢ & || E

Equation (2.37) is equivalent to three equations in the nine components of ., and is
the result of one of the two roots of Equation (2.12). The other root will produce a
dyadic equation, similar to Equation (2.37) with the same &, but with different k. and
(E®,H%). The two dyadic equations, along with the condition that &, is symmetric,
can now be solved for the nine components of €.. The determination of j, is parallel

to that presented for &, but uses the dyadic Equation (2.34).

2.3.4 Uniaxial Artificial Media

For certain simple anisotropic media, termed uniaxial media, the off diagonal compo-
nents of X* (and X™) are negligible, and the diagonal components are related to E®
and P? by
) A
“ = GOE"'_Q 1=2,¥,2. (2.38)
Equation (2.38) can be used to find the ii component of %* provided that E? is non

gero. If for a given direction of propagation and root, E® # 0 for § = z,y, z, then
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Equation (2.38) can be used to find all three diagonal components of X*. If for a
given direction of propagation and root E? = 0, then P? = 0, and Equation (2.38)
is indeterminate. In this case x%; can be determined from the other root, or by a
different direction of propagation.

Consider propagation along of one of the three principle axes in a uniaxial media.
The two roots will correspond to polarisations in the directions of the two principle
axes transverse to the direction of propagation. For this special case, the effective
permittivity and permeability can be determined from the root k. and characteristic
impedance 7,. It is assumed that k. and 5. have been determined for a given frequency,
polarization and direction of propagation along one of the principle axes. Since k.
and 7). are related to u. and ¢, by |

k. 5 w\/pee, and 9. = ‘/—-’:.—?, (2.39)
then
- _ Teke :
Ee - U"e md “c - w . (2.40)
If the magnetic moment of the scattering objects is negligible, then u. = po, and ¢,
is given by
k
€ = P’ (2.41)

The adv;ntage of using Equation (2.41) for pure artificial dielectrics (i.e., p. = po) is

that one need not compute 7..

2.4 Fields of a 2D Planar Array of Current Ele-
ments

This section evaluates the exact electric and magnetic fields of a 2D planar array of
Linear current elements. The theory included here has been presented before [28, 29,
30), however, it is repeated here since it is of great importance in implementing the
PMM solution, and to employ notation specific to the artificial dielectric geometry.
Figure 2.4 shows a 2D planar array of infinitesimal current elements arranged on a
parallelogram grid. The host medium is homogeneous and isotropic with constitutive
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parameters (o, €). Note that the host medium is not uecessarily free space, and in
general is a lossy medium. The unit vectors of the grid are & = X and ¥ = v, X + v, ¥,
and the spacings of the grid are d, in the @ direction and d, in the ¥ direction. The
elements are referenced by the indices (iy,j,) for —oo < (iy,7,) < co and element
(34, Jv) is located at R;; = ¢, d, @i + j, d, V. All elements are polarised in the arbitrary
direction &, which may have a component out of the zy plane (or the uv plane.)
Corresponding to the value of the plane wave with wave-vector ke propagating across

the array, the incremental current moment on element (i, j, ) is

aIdl e ke Rij — g [l e~ Ilinditiv b) where
ke = keeX+ky¥+ ket
d = d,ke, and

dj = dy(kesvs+keyvy).
The entire array produces some incremental electric vector potential dA, which is
the the summation of each individual element’s contribution. If the field point is at
R = zX + y¥ + 2%, then the contribution of element (i, j,) to dA is

R-
dA;; = ‘ [} I dl' e~ (i di+iv &) M (2.42)
IR -R;l|
Summing the contributions of every element in tie array, it is obtained that
o " —jko|R-Ryj|
dA =Y Y dA; =& L2 1dl T eritnd) 3 emitind £ " (2.43)

o in Vi o i IR - Ryl -
In Equation (2.43) it is implicit that the summations are over —oo < (i,,j,) < oo.
The inner summation of Equation (2.43) can be rewritten as
Sttt T il Lt uy VR
R Jo—nayie
where z' = z — j, v, d, and a? = (y — j, vy d,)? + 2°. Next, the Poisson sum formula
131]

(2.44)

Y et Fmu) = — Ef ( + n—) (2.45)
along with the Fourier transform pair
e~/ - et o —
F(w) = m:»ﬂt): -gug’(a ko—t), (2.46)
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Figure 2.4: A 2D planar array of infinitesimal current elements.
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where H{() is the second type Hankel function of order sero, is applied to Equa-
tion (2.44). With the variables of transformation defined as

n — n,
wo — d,
w, — 2
t - ke
it is obtained that
Z e".'(‘i di) el;'h| R“I‘;l d' Z e"i’(k‘l"'n' E') e’(}' Vs "’(*“'.’”' E) X
?] b L .
2r\?|
x H? [a\/ks - (k., + n.z)] . (2.47)
4

All the summation indices of Equations (2.45) and (2.47) are of the range —co <
(m,n,n,) < oo

The elect:ic vector potential can be now be written as

Boldl o _jmos(len +n, g25-)
dA = &——— 15dy > Ze X

x 3 emitollnd ) m—nene 250 (2 [kor,\/(y — ovyda) + z=] , (2.48)

Jv

where r, = \/ 1- (L‘,:: + n.ﬁ-)z. The Poisson sum formula of Equation (2.45) is
applied a second time using the Fourier transform pair

it g=isy/(kory)? -6

F(w)=H® (kor,\/;’ + (w _u.,y) = f)="— e (2.49)
and the transformation variables defined as
m — g,
n -
wo — vd,
wg ~ y
t o~ k(i -nd):
26

1
k.




Carrying out this process on the inner summation of Equation (2.48), it is obtained
that

. poldl -,hz(t&ﬂ.;ﬂ;) —Jhov("ﬁ?"‘- ﬂ!:*"’ﬁ%&')
dA = .21100 dov, d'{: 2‘

-,h;‘/l (’Q‘+M;ﬂ;)’~(-¢—m ;g{;'l-u-;;{-:z;)’

(2.50)
Jh- G )t - (- mte s+ mgiin)
It is worthwhile to write Equation (2.50) in the compact form
J ~skoR-#4 >0
dA = i,—“o{él——- — for : where (2.51)
Gkoduvydy W7 57 1 <0
R = zx+yy+ 2%,
Py = rX+nyErd,
=
r = %‘”-.,,h:,“’”%o»,d.’ and

ry = \/1 -ri-r} such that Im(r,) < 0.

In this form, the electric field of the 2D array of infinitesimal current elements is
expressed as a double spectral summation of plane waves propagating in the spectral
direction £, for positive z and #_ for negative z. Note that in the square root defining
7, the root is chosen such that the spectral plane wave either propagates or decays
exponentially as it moves away from the zy plane. In general, for a lossless host
medium (Im(k) = 0) there will be a finite number of propagating waves and an
infinite number of decaying evanescent waves.
The incremental magnetic field is found simply as

-bolf
zz - *.xg, (2.52)

1
dH=—V xdA =
Ho 241..”.4»

and the incremental electric field is found as

1 Idl'n, Rty
dE=—V xdH=
Jweg X 2d,vyd, 4 z T

ey = (ﬁ X f'*) X f'* = (i‘i . i)f'* - d. (2.54)

- where, (2.53)
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Figure 2.5: Vector relatiopship for the center Q = 0 current segment nj.

If the reference point moves from the origin to R’, the resulting field is the same
as if the reference point stays at the origin, and the field point moves to R-R’. In

this manner, dE becomes

Idl o -J +iko R $
e sko E
2dﬂ "vdv Ny Ny x€

The total electric field of a linear current clement nj, denoted as F,;(!'), is now

determined by integrating Equation (2.55) along the length of the current element.
Typically, a current element nj will be monopole j (j = 1 or 2) of expansion function

(2.55)

n. Note that in Equation (2.55) the only variation on the source point R’ is in the
last exponential term. As shown in Figure 2.5, if current element nj is straight, the

source point R’ can be written as
R' = R,; + dn for 0 < U < dy; (2.56)

where R,,; is the position vector from the origin to the reference end of current element
nj, and d,; is the length of segment nj. .

Figure 2.6 shows that there are three possible distinct regions that the field point
R can be within. The field in Region (I) consists only of left-going waves, so the £_
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spectral vector is chosen and the integration is over the entire range of the current
element. Similarly, the field in Region (III) consists only of right-going waves, so .,
is chosen and the integration is over the entire current element. In this manner, the
electric field in Region (I) can be written as
(I) _ Jho(l"‘-u:) 2. en; " .
E,/(R)= 24' i, 22 enj- Pp;_(0,dy;) (2.57)

and the electric field in Region (III) can be written as

ElD(R) = uu,,vd" D)

Ny Ny

e-iko(R-Raj)-4,

€nj+ Foji (0,dn;). (2.58)

L

The function Pj;,(a,b) is termed the nj** source pattern factor and is defined as
it (8:0) = _/a Foj(l') et Rt (nite) gr (2.59)

where F,;(l') is the current distribution along the length of current segment nj.
The source pattern factor is evaluated in greater detail in Appendix A. In Region
(II) the electric field at point R consists of left-going waves from that section of
the current element denoted by nj_ and right-going waves from that section of the
current element denoted by nj,. Thus, the field at point R in Region (II) is the sum
obtained by choosing the #_ spectral vector and integrating Equation (2.55) over
nj_ plus choosing the #, spectral vector and integrating Equation (2.55) over nj,.
Therefore, the electric field in Region (II) can be written as

(II) e~k (R-R,;)-2,
E, (R) = 2du vy, ZZ y €nj4 nJ+(a'lJ+’b'lJ+) +
e—iko(R-Ry;)2-
ety ) (2:50)

The limits of integration are from an;; to byjs for evaluating the Pp;, integral and
from an;- to b,;- for evaluating the Py, integral. These limits depend upon the
specific wire segment geometry, and are given in Section A.l.

Note that if the current element is in a plane parallel to the zy plane, then Region
(IT) vanishes and there are only two regions. In this case, Equations (2.57) and (2.58)
can be used to determine the electric field everywhere.
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Figure 2.6: The three regions that the field point can be within.
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In a similar manner, the magnetic fields in the three distinct regions are:

(I) 1 e-J'kO (R-R,;)-t-
H,/(R) = 2ovid, g%: ™ (8n; x £-) Pr;_(0,dn;) (2.61)
e-iko(R-Ruj) 44
H(IH)(R) 2d,,vy L zz - (@nj % #4) Py;,.(0,dn;) (2.62)
Ny Ny 3
e=iko(R-Raj;) 44
HE(R) = 570 25 | (g X £4) Pl (omia i) +
e-Jbo(n-nm) -
T (e X £-) Pl o i) (2.63)

It should be noted that the fields evaluated in this section are for a single current
element nj. This is adequate for evaluating the fields from a monopole expansion
function. However, a dipole expansion function is composed of two curreﬁt segments,
and the procedure of this section must be repeated for each section. As shown in
Figure 2.5 and in Equation '(2.56), the vector R,; always points from the origin to
the zero current endpoint of current segment nj, and the unit vector &,; points from

the gero current endpoint to the unity current endpoint.

2.5 Fields of a 3D Volume Array of Current Ele-
ments

This section uses the results of Section 2.4 to evaluate the exact electric and magnetic
fields of a 3D volume array of linear current elements 32, Ch. 2]. As shown in
Figure 2.7, the 3D volume array consists of an infinite parallel stacking of the 2D
planar array of elements in the host medium (g, €). The 2D layers are referenced by
the index k,, for —co < k,, < 00, and are spaced a distance of d,, in the unit direction
W = w;X + w,¥ + w,%. Therefore, the vector from the reference point on the k, =0
plane (the origin) to the equivalent point on any k,, # 0 plane can be skew to the zy
plane, and is given as k,d,W. The current elements on each plane will be weighted
by the plane wave propagating through the volume array. The current weighting
corresponding to the plane wave’s variation in the @ and ¥ directions have already

been included in the analysis of Section 2.4. The current weighting corresponding to
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- W=w, X+ wy §+w, T
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Figure 2.7: A 3D volume array of made of stacked 2D planar arrays.

the plane wave’s variation in the W direction is

C(ky) = e kudu (keW) _ o-il(keds) where

dk = dw(kesw: +keywy+k¢:wx)-

Primarily of interest are the fields in the center lattice cell about the origin. These
fields are the sum of all the 2D planar element fields for all planes —oco < &, < oo.
The fields of the k,, = 0 planar array were determined in Section 2.4. The fields of
the planes referenced by k, = +1,+2,+3,---,+00 consist of only left-going waves
in the center lattice cell. Thus, E&?(R) and H,(,E)(R) of Equations (2.57) and (2.61)
must be weighted by C(k,) and summed over positive k. Similarly, the fields of
the k, = —1,—2,-3,---,—00 planes consist of only right-going waves in the center
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lattice cell. Thus, ES,I,-H)(R) and Hg-n)(R) of Equations (2.58) and (2.62) must be
weighted by C(k,) and summed over negative k,,. It should be noted here that the
z range spanned by elements in adjacent k,, planes do not overlap. (See Figure 2.6.)
This requirement insures that there are no Region (II) type fields from planes where
k., # 0. For both positive and negative k,,, to account for the shift in position to the
plane indexed by k., the vector R,; (of the field equations for Regions (I) and (III))
must be replaced by Ry; + kyd,W.

In this manner, the total electric field in the center lattice cell, due to the 3D

volume array of all the nj** current elements, can be written as
ErCT(R) = Enj(ho = O,R) +
+ kz.i, Clka) ES(ku, R) + 3:, Ck)EXD (R, R).  (2.64)
The electric field ES,IJ)(k.,,R) can be written as
e~ Tko[R—(Ronj+kudu?)) -

EQ(k.,R) = 22 €nj- Pl (0ydns).  (265)

Nu Ny ‘

Inserting Eg}(k.,,, R) into the first summation of Equation (2.64) and rearranging the

summation order, it is obtained that

3 C(k) EO (ke R)

kw=+1

W r €nj- u:—(o dns). (2.66)
Ny Ny =+ z

Similarly, the second summation of Equation (2.64) becomes

) e—iko[BR-Rn;)#_

=M vy ‘f e=ilkuB-)
2d,v,d,

Y (k) EMDG,,R)
kw=-1

. -J'ko[n-—l..,-]-h
2d..v,,d., 2 ( Z -J(k'p")) - enjt+ Paji(0,dn;).  (2.67)

Ny Ny \Kky=-1 L

For Equations (2.66) and (2.67), By = dix — kodu(W - £1) = dulke — kofs] - W
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The innermost summation on k,, can be evaluated in closed form by making use

of the summation identity
o0 . e"j‘
Yy e Pk = )

where g is . complex number. The summation on k,, in Equation (2.66) is a straight-

forward application of this identity. However, the summation on k,, in Equation (2.67)
requires a change in the summation index of k, — —k, such that the summation is
over positive k. The results are

e—JiB- o P+

e—:*-ﬁ- - and e-ikuﬂ-f - —
k..z-.:ﬂ 1- eih- k.z=:-1 1— ebs

(2.68)

Combining these results, the total electric field in the center lattice cell can be written

EIOT(R) = E,j(k, =0,R)+

( e~iB- )e-jbo[l-‘-.i]'f-

—eih-

o
* 2dnd, 2

Ny Ny

r, e'll- n,)-(o dﬂ1)+

1 — eiP+

e3P+ e—iko[R-Rnj)4
+ (i5m) =

enis P (1) (249)

Performing a very similar operation on the magnetic field, the total magnetic field in

the center lattice cell can be written as

HIOT(R) = H,j(k. = O,R)+

e—iB- e-Thko[R-Rnjl--
) (8 X £_) P25 (0ydng) +

s\ o-iolR-Ru}ts
+ (l_e,m) i X £ B 0] @70

For simplicity, is is worthwhile to write these total fields as

L

Tz

EIOT(R) = E,;(k, = 0,R) + E,j(kw > O,R) + Eoj(ky <O,R)  (2.71)

HIOT(R) = H,j(k, = 0,R) + Hyj(kw > O,R) + Hoj(ky <O,R).  (2.72)
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Chapter 3

Evaluation of the Impedance
Matrix

Typical elements of the impedance matrix are given by Equation (2.10).for the Znn
terms, and by Equation (2.11) for the AZ,,, terms. The evaluation of the AZ,,
terms is straightforward and is presented in Section 3.1. The Z,, terms are more
complicated to evaluate, as will be outlined next.

Recall that expansion function n can be either a dipole (j = 1 and 2) or monopole
( = 1) expansion function. Similarly, weighting function m can be either a dipole (i
= 1 and 2) or monopole (i = 1) weighting function. Therefore, there are four mutual
impedance possibilities. Following the polarity convention presented in Section 2.2.1,
the four. mutual impedance possibilities are:

1. i=2,j=2 Zomn = Zmi 1 — Zminz — Zmamt + Zmanas
2. i=15=2 Zmn = Zmim1 — Zmin2,

3. i=2j=1 Zn = Zmim1 — Zm2,m1, a0d

4. 1i=13=1: Zmn = Zmim

where Z,; qj is the mutual impedance between monopole j of expansion function n
and monopole i of weighting function m.
From Equation (2.10), on a monopole to monopole basis, it is seen that

Zmi.nj = ZQ: CQZgi,nj (3‘1)
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where

Z3 0=~ /v ” ES - W,.dv (3.2)
in which EJ is the electric field of J, and the integration is over V;, the volume of
monopole i of weighting function m. The electric field Eg results from both the axial
and the radial components of Jg-, given in Equations (2.15) and (2.16). Therefore, it
is convenient to write E,?J as

E} =EY + EY (3.3)

where E,%' is the electric field of the axial current component and Eg" is the electric
field of the radial current component. Similarly, it is convenient to write Z,,?,-_,,,- as

T = Zotini + Zoin; (39

22 . =—- | E®.W,.dv (3.5)
m '/ ) -/V..“' )

2= [ EY Waidv. (3.6)

The evaluation of ZsY, . is presented in Section 3.2.
The z,f,‘,-f,,,- terms are evaluated for all values of Q at once by noting that

Zpini = %: CQZ.?.".-.,’

=-Yc?| EX . W,dv=- [ cQEf,}'] + Wi dv 3.7
% '/‘-’vm' ‘/‘-’mi % ( )
where

2 TOT
oo -n2e

with ELOT given in Equation (2.69) or (2.71). The evaluation of Equation (3.7) is

rather involved, and is presented in Section 3.3.

3.1 Evaluation of AZ

A typical AZ,, term is given by Equation (2.11), which involves only the expansion
and weighting functions defined in the center Q = O lattice cell. Note that the
AZ term will be non-zero only when expansion function n overlaps with weighting
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monopole i )
weighting function m
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“"' expansion function n

Figure 3.1: The two possible monopole to monopole overlap arrangements.

y
function m. Since the expansion functions are made up of monopoles, the overlapping
is treated on a monopole to monopole basis. Figure 3.1 shows the two possible ways
that monopole j of expansion function n, can overlap with monopole ¢ of weighting
function m, for i, = 1 and/or 2.

The AZ contribution when monopole j of expansion function n overlaps with
monopole § of weighting function m can be written as

_ 1 d p2x pa o ‘
st g [ [ [ o wrsessss e
where d is the length of the overlapping monopole segment. Noting the expressions
for the expansion and weighting functions in Section 2.2.1, Equation (3.8) becomes

1
jwxa?(e; — &)

Azﬂ'sﬂ.’ "'v'lJ (3'9)

where F,,;n; depends upon the axial vu'i;tionl of the overlapping segments, and is
written as :
F,..‘,..,' = /: F,..‘(h) l) F,,,(ho l) dz. (3.10)
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In both overlapping cases of Figure 3.1, the axial variation for the weighting
monopole ms is
Fai(ho3) = { Ld #0<s<d (3.11)
0 otherwise.
I the overlapping geometry is as shown in Figure 3.1(a), then the axial variation
of the expansion monopole nj is the same as for the weighting monopole mi, and
Equation (3.10) becomes
Fouing = kod — m(_’ﬂof) sin(ko d)
2 ko sin*(ko d)
If the overlapping geometry is as shown in Figure 3.1(b), then the axial variation of
the expansion monopole nj is

(3.12)

—stnllolds)) ro<s<d
Fuj(ko z) = { snllo . (3.13)
4 0 otherwise,

and Equation (3.10) becomes

P = S0(kod) — kod cos(ko d)
ms,ny 2*0 lini(h)d) .

The minus sign in Equations (3.13) and (3.14) account for the fact that the current
on the monopoles in Figure 3.1(b) are of opposite polarity.

(3.14)

3.2 Evaluation of Z%

This section evaluates ZY, . given in Equation (3.6). As indicated in Section 2.2.1,
the MM expansion functions have a radial current component, J;;, defined on a per
monopole basis and given by Equation (2.16). However, the MM weighting functions,
Wi, given by Equations (2.20) and (2.21), contain only an axial current component.
The p,;-directed current J}; will produce an electric field, which will be highly lo-
calizsed to an axial field along its centerline. Therefore, Z, . will be approximated
as sero, unless if monopole j of expansion function n overlaps with monopole ¢ of
weighting function m. In this manner, only the radial currents in the center Q = 0
wire object contribute to the impedance mztnx In summary, Z,?,?N =0forallQ #0
and for all nonoverlapping segments.




Asillustrated in Figure 3.1, and explained in Section 3.1, the overlapping is treated
on a monopole to monopole basis. If monopole j of expansion function n overlaps
with monopole i of weighting function m, then the contribution to the impedance

matrix element Z,,,, resulting from J3;, is written as

,....-u—// / Eq; - Wi pdp d ds (3.15)

where d is the length of the overlapping monopole segment, and Ei; is the electric
field of J;;. Referencing the work of Richmond and Newman (33}, this becomes

_Cl1-Jo(k,a))
okl Foin (3.16)

{4 —
Znini =

where
Fini= [ Failhos) Fii(hos) ds. (3.17)

The prime ’ denotes differentiation with respect to 2z, and Fni(koz) and F, j(koz) are
given by Equations (3.11) and/or (3.13), depending on the overlap geometry. If the
overlap geometry is as in Figure 3.1(a), then
ko
’
F, m:.n; sinZ( ko d)
and if the overlap geometry is as in Figure 3.1(b), then

Fhins = gaioiegy Bod coskod) + sin(ko ). (3.19)

[ko d + sin(ko d) cos(ko d)] (3.18)

The opposite polarity of the overlap case of Figure 3.1(b) has been included into
Equation (3.19).

3.3 Evaluation of Z?

This section evaluates the monopole to monopole impedance Z7; .. given in Equa-
tion (3.7). In general, the scalar product of ELOT with W, is integrated throughout
Vmis the volume of monopole i of weighting function m. Thus, the impedances require
a triple volume integration throughout V,,;. However, in all cases this can be reduced
to a single integration in the axial direction of the weighting function monopole mi.
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If the monopoles mi and nj do not physically touch or overlap, then the currents
can be approximated as line sources of the same axial current variation and strength,
located at the centerlines of the monopole segments. In this case no stagger of the
weighting monopole is necessary. However, if both monopoles are in the same plane,
and that plane is parallel to the zy plane, then a slight stagger of the weighting
monopole out of this plane can accelerate the convergence of the spectral summations
involved in the impedance evaluation. This is due to the slight exponential decay of
the evanescent waves in the spectral summation of plane waves.

If the monopoles mi and nj do physically touch or overlap, then the triple volume
integration is reduced to a single integration by employing the method of equivalent
wire radius, as used by Newman for thin material wires [25]. Basically, this results in
the elimination of the dp and d¢ integrations by staggering the weighting monopole
an egusvalent wire radius off its,centerline. The theory of this equivalent wire radius
is presented in Appendix B, and the rules for staggering the weighting monopole mi
are given in Appendix C.

When integrating in the axial direction of the monopole mi, it is worthwhile to

note that the position vector to a point on monopole mi can be written as
R=R,;+én;! for 0 <1< dpm; (3.20)

where R,,; is the position vector from the origin to the reference end of monopole mi,
and d,,; is the length of monopole mi. Recall that for the PWS monopoles used in this
paper, the reference end is the zero—current end. Equation (3.20) is a direct result
of Figure 2.5 applied to monopole ms instead of monopole nj, where the position
variable I’ has been replaced by .
The impedance Z;,; . involves E,,TJ-OT, the electric field of the 3D array of current
E$OT

segments nj. is given in Equation (2.71), where it is represented as contribu-

tions from the three ranges of the lattice summation index k,, (k, = 0,k, > 0 and

ke, < 0). Thus, it is convenient to write Z; . as
r.m'.nj = Z::'.nj + Z:z,nj + Zv.nf.nj (3'21)
Sins == [, Bnilhe = 0,R) - Wido 32
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22, =— /v _ Enj(ks > 0,R)- Woidy (3.23)
Z5, = /v _Enifks <O,R)- Waido. (3.24)

In all the above cases, the weighting monopole becomes the filament source
Wi = g Fi(l). (3.25)

3.3.1 The Evaluation of Z*

mi,nj
The form of E,j(kw = 0,R) used in the evaluation of Z3,: depends upon the geo-
metrical arrangement of monopoles mi and nj. Figure D.1 and Appendix D describe
the eight possible geometrical arrangements, which are labeled as Case 1 — Case 8.
Basically, Equations (2.57),(2.58) and/or (2.60) are used to evaluate E,;(k, = 0,R)
in Regions (I), (II) and/or (III), as required by the geometry of monopoles mi and
nj. The eight possible cases for the evaluation of Z37 .. are analyzed here.

ms,nj

Case 1 and Case 2:

Cases 1 and 2 are the simplest because the electric field of expansion monopole nj
across weighting monopole mi consists solely of left-going or right-going waves, re-
spectively. For Case 1, E,;(k, = O,R) = E&IJ)(R) of Equation (2.57), and for Case
2, Epj(kv = O,R) = ES,I,-II)(R) of Equation (2.58). Since monopole mi is entirely
within either Region (I) or Region (III) of expansion monopole nj, only one expres-
sion for E,;(k, = 0,R) is required, and the limits of integration are over the entire
length of monopole mi in that region. The only spatial variation of E,j(k, = 0,R) is
the exponential term e~7*R*: jngide the double spectral summation of plane waves.
Thus, the integration only involves this exponential term and the weighting function
variation of Equation (3.25).

Inserting E,j(k, = 0,R) and W, into Equation (3.22) and integrating, it is
obtained for Case 1 that

- 7 e~ ikoRmi—Rnj)2-
Zrini="— 2 g': {: _ - X
X (nj— * imi) Prj_(0,dn;)Pr;_(0,dmi) (3.26)
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and for Case 2 _ ™ iRty
T = g 2T
X (€nj+ - dmi) P, ,+(0 du;) Prniy (0ydmi) (3.21)

where P.;. (a,b) is termed the mi** receive pattern factor and is defined as

Prs(@d)= [ Fail) e ™0t dl = Oy [As(0) - Ana(a)]  (328)

where
. 1
mit = (ko dos) [L — (s - F2 )] (3.29)
Al u(z) = e torlhmite) [ (G [ . 8, )sin(ko 2) — cos(koz)]. (3.30)
Case 3:

Case 3 is more complicated begause E,;(k, = O,R) = E(n)(R) of Equation (2.60),
which consists of both right-going and left-going waves across weighting monopole
mi. However, monopole mi is entirely within Region (II) of expansion monopole
nj, so the limits of integration are over the entire length of monopole mi using the
Region (II) field. The spectral summations contain the usual spatial variation of the
exponential term e~i%R*:  Moreover, the source pattern factors PJ;;(anjs;bnjx)
contain a spatial variation due to the z dependence of their integration limits, given
in Section A.1. With these considerations for Case 3, Z3;, . becomes

'minj

—5ko[Rmi—Rajl-#4+
Zv'n—n,ru = 2‘1:':"4" 22 e s G'm'.'l.i+(0a dmt')"'

Ay Ay

e~ ko [Rmi—Raj]-
+ Gminj—(0,dmi )] (3.31)

L

where

Grminiz(a,0) = /: (€njt * imi) Fmi(l) e 7®0lst2) P2, (a4, B0je)dl.  (3.32)

Note that P}, (anj+,bnj+) has an I dependence due to the source integration limits.
The scalar product (e,;4 -&m;) appears inside the integration so that open—current end
charge contributions can be isolated and/or removed (see Section A.2). Gpinj+(4,b)
is a rather involved integration and is evaluated in Appendix E.
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Case 4, Case 8 and Case 6:

Note from Figure D.1 that in Case 4 the weighting monopole is partially in Region (I)
and partially in Region (II) of expansion monopole nj. Therefore, E,;(k, = 0,R) =

(I)(R) of Equation (2.57) when integrating over the portion of monopole ms that
is in Region (I), and E,;(k, = 0,R) = (H)(R) of Equation (2.60) when integrating
over the portion of monopole mi that is in Region (II).

Similarly, for Case 5 the weighting monopole is partially in Region (III) and
partially in Region (II) of expansion monopole nj. In this case, E,;(k, = O,R) =
Eg-n)(R) of Equation (2.58) when integrating over the portion of monopole mi that
is in Region (III), and E,;(k, = 0,R) = ES,I,-I)(R) of Equation (2.60) when integrating
over the portion of monopole mi that is in Region (II).

When integrating in Region (I) or Region (III), the spatial variation of E,;(k, =
0,R) consists only of the ex;)onential term e~*R*: However, when integrating in
Region (II), the spatial variation of E,;(k, = 0,R) includes the exponential term
and the source pattern factor. With these considerations, for Case 4 Z7; . becomes

i 2duvydu EZ

e—iko[Bmi~Rnj]-$-

T

(nj= * &mi) Praj_(0,dn;)Pri_(Gmi1, bmi ) +

e~ ko [Rmi—Ron;]#-

+ - Gmini-(@mi2y bmiz) +

Gminj+(Bmiz, bmiz) (3.33)

L
and for Case 5 Z77,; becomes

Z'm'mi = 2du”ydu 2 Z

Ny Ny
g ikoBmiBnjlHs

L

(enjs+ * Bmi) Prjy(0,4;) Pri_ (@mi3, bmia) +

¢ iko[Bomi— B4
+ r, Gmi,nj— (amﬂ’ bmi2) +
e~k [Rmi—Raj]-4
+ Gmi.nj+ (anu'2 ’ bmi?)] . (3.34)

Tz
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In either case, the limits of integration (ami1,bmi1), (miz, bmiz) and (@mi3, bmis) repre-
sent the portion of weighting monopole mi that is in Region (I),(II) or (III), respec-
tively. These limits are defined in Appendix F.

From Figure D.1, it is seen that Case 6 is an extension of either Case 4 or Case
5 in that monopole mi extends over Regions (I),(II) and (III) of monopole nj. The
same statements made above for Cases 4 and 5 hold true for Case 6, so that Z75 .. is

written as

Z:'::-ﬂ.i = 2du”ydv ZZ

e ko [Romi~Bnj) -

r (e"J"' "’“) ﬂj—(o dﬂJ) m.-(amihbmil)'*‘

e~ ko [Reni—Rnj]t4

T

(eﬂJ+ a'"ll) nj+ (0 d'lJ) mi— (a,,..'a, b""'3) +

e_jko [nﬂll.-n"\j]"-
+ ir Gmi,nj- (ami2, bvm'z) +
e—Tko[Rmi—Rajlts
5 Grm',nj+ (avm'2 ’ bms'2)] . (3-35)

L)

The limits of integration are given in Appendix F.

Case 7 and Case 8:

From Figure D.1, it is seen that Case 7 can be viewed as a special case geometry of

Case 6, where Region (II) of monopole nj has vanished. Thus, Z;7 . ; consists of only

mi,nj

the Region (I) and Region (III) contributions, and is written as

Z"':.M' = 2d.,v,d., Z E

e—Tko[Rmi—Rqaj]-$-
[ (€ni- - B) P25 (O dng)Prs_(Gmits o) +

s
= iko[Rmi—Rnjl 4

L)

(ensi  Bum) P (0, dn,)P,:.+(am.a,an.a)] (3.36)

Case 8 is similar to Case 3, except that in Case 8 monopole mi does not have any
extent in the z direction. However, it is still entirely within Region (II) of monopole
nj. The limits of integration become independent of z, and the integrations of (3.32)
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no longer are nested. For case 8, Z%: .. can still be given by Equation (3.31), except

that the pattern factor integral term now simplifies to

Gminjx (“’ b) mli: (at b) nit (“m:h bn:*) (3'37)

where the limits of integration are given in Appendix F.

3.3.2 The Evaluation of Z3},; and 235,

The electric field from all planes indexed by k,, > 0 consists only of left-going plane
waves in the center Q = 0 lattice cell, and is expressed as
( e—iB- ) e~ iko[BR-Rn;) 4

-

E,.j(k., >0, R) ZZ

eﬂJ‘ uJ- (0 dﬂl)
(3.38)
The only spatial variation of E,.,-(k., > 0,R) is the exponential term e~#%R*- ingide

s

the double spectral summation of plane waves. Employing Equation (3. 20), 233

can be expressed as
D _ 7o e3P~ '\ e—iko[Bmi—Rng)t-
me.n, 2du‘llyd., §§ (1 _ e__’-p_) " X
X (e""_ ."“) "J-(o d"J) nu—(oi dmn) (3.39)

where Pr; (0,dn;) is given in Equation (3.28).
Similarly, Zz5,; can be expressed as

( e—B+ )e-iko[lmi-l.;]-h

3 - __ N0
me.nJ 2duvudv "2' nz' -— e"jﬂ-l» e X
X (€nj4 * mi) u,+(° dn;) Prii(0,dmi) (3.40)
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Chapter 4

Average Eigenfunction Electric
and Magnetic Fields

This chapter presents the evaluation of the electric and magnetic eigenfunction fields
averaged over the center Q = 0 lattice cell. These fields, denoted as (E®, H®), are
defined as 4 '

E°= Z% [0 ER)dv ()

H® = % / [ HR)dv o (4.2)
where Av is the volume of a lattice cell in the 3D array and V® represents the
integration limits for the center Q = 0 lattice cell. For the evaluation presented here,
the 3D lattice array consists of perpendicular axes, i.c.,

» Y

i = X, v = ¥, w =
d, = d, d, = dn’ d, = 4,
and therefore Av = d, d, d,.

The eigenfunction fields (E, H) are the fields radiated by the eigenfunction cur-
rents, so for the PMM solution

E(R) =~ }a-r: I, g(-l) 1B i(R)dv (4.3)
N 1) ,

HR)~ Y I Y (-1)# Hyj(R) dv (44)
n=1 IJ=1

where the summation on j is j = 1 for a monopole and j = 1,2 for a dipole expan-
sion function. The sign factor (—1)*! accounts for the polarity convention of the
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monopoles making up the expansion functions. In evaluating the fields of a given MM
expansion function, the fields of the radial current component are neglected, and thus
Equations (2.71) and (2.72) are used to evaluate the fields of current segment nj.
Noting that Equations (2.71) and (2.72) represent the fields as contributions from
three ranges of the lattice summation index k,, (k, = 0,k, > 0 and k, < 0), the
averaged eigenfunction fields are written as
E® s AR j+1
S aw & B R0 Gk = 0) + itk > 0) + Lk <0)] - (45)
L3 Ry
~ i 2 I L (D [k = 0) + Ti(ko > 0) + I(ke <0)] - (46)

Jj=1

where

(ke = 0) = [ | Ens(ho = 0,R)dv
E(ke >0) = [ | Euj(ke > 0,R)dv
(ke <0) = [ Enj(ke <O,R)dv
(ke =0) = [ | Hoj(ko =0, R)dv
B(ke > 0) = [ | Haj(ko > O,R)dv

E(k, < 0) = [v o Haj(ko < O,R) dv. (4.7)

Recall from Figure 2.6 that in general there are three possible regions for a field
point in the center Q = 0 lattice cell, due to the k, = 0 array of current segments
nj. These regions are defined by the z values of the current segment endpoints.
Figure 4.1 shows the limits on the z integration corresponding to the three regions.

It is convenient to write

5k, = 0) = 15D 4 20D 20 (43)
H(k, =0)= lf,-(l) + @, Ig(m) (4.9)

where

Ir(l) / I E(I)(R)dv
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Figure 4.1: The z integration limits for evaluating the average eigenfunction fields.
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4

[ B (R) do. (4.10)

where the integration limits V1, VII and VIII refer to the Region (I),(1I) and (III)
portions of the center lattice cell for the k,, = 0 current segment nj, respectively. The
electric fields ED(R), ESO(R) and EE(R) are given by Equations (2.57),(2.60)

and (2.58), respectively, and the magnetic fields (I)(R),Hgl)(ll) and Hgm(R)

given by Equations (2.61),(2.63) and (2.62), respectively. Note that if current segment
nj is in a plane parallel to the zy plane, then z3 = 2,, and Region (II) vanishes, and

hence T = 15D = o,




4.1 k, =0, Region (I)

From the analysis in Sections 2.4, it was found that for Region (I) and Region (III),
the only spatial variation of the fields is the exponential term e~*®*: ingide the
double spectral summation of plane waves. Thus, Iz(l) and Iz(l) can be expressed

as
I — .
I::;() 2d ZZ — €nj- P4 (0,dn;) / ikoBRA- gy (4.11)
eJkoR-., - L
I"Hj B 24,@22 —— (8 X £-) Fy;_(0,dn;) /;/Ie iBE- gy, (4.12)
The limits of integration for Reg;on (I) are

-& <z < %
Via{ & <y <4
! —!3‘ S z S 2

and thus the integration of Equations (4.11) and (4.12) becomes

/V (e dy = 11,1}

where

da : —

= / 2 e'j“"’dz = d: lff, =0
-% e sin(kor- %) otherwise
d . _

Iy=/-ﬂl e—jkor'ydy= dv lfry—o
-3 o sin(kory 2) otherwise
d, .
| z) ikorex zl+-§‘ 1fr,=0
I = T dz = ) e
-/—523 { GXP(Jkohlx)j;:'x'P(—Jbor.;) oth ise.

Due to the product e,;_ Py;_(0,dn;) appearing in Equation (4.11), the integrated
electric field li(l) does include the electric field resulting from the open—current end
charge. However, since the product e,;_ P5;_(0,ds;) occurs outside of the spatial
integration of Equation (4.11), the electric field of the open—current end charge can
be easily isolated and/or removed using the technique presented in Section A.2. This
will not affect the values of I., I, or I,I.
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4.2 k, =0, Region (III)

In a similar manner, ]:.(III) and 1:(111) can be expressed as

B o e S5 e B0 [ b (w19
o Rnj 4 .
20 sdvg_:g.i"’;—(-wxm Ody) [ PR b, (414)
The limits of integration for Region (III) are
-4 <z< %
vIl-{ & <y < 4
1z <z < 4%

and thus the integration of Equations (4.13) and (4.14) becomes

4

/V et dv = L1, 11

where I, and ], are the same as above and

otciborsl)-emicibren)  opherwise.

d H -
Im / ")ko"-l dz { - 23 lf P = 0

Note that a similar statement can be made concerning the electric field resulting
from the open—current end charge for the integrated Region (III) electric field as was
made above, for the Region (I) electric field.

4.3 k, =0, Region (II)

In Region (II), the spatial variation of the fields consists of both the exponential
term e~ioR*: 4nd also the pattern factor P2, (a,b) due to the z dependence of its
integration limits, given in Section A.1. Thus, l:,(n) and l:(n) can be expressed as

Rl 7222
[Lw_-_ /vn €nj— n,-(%-,bn; )e"""l"dv+

80

|
T I O Ey G Ey 0 0D BN P B B ) G BE B I A
.




+ Lm: /n Cnj+ P:,.+(¢"-+,b'j+) e'jh‘-"«# du] (4.15)
1 _
A 2
[ "_“:‘__";(a,,,- x8.) [[ 1] Pli-(onj=sbus-) e ™R dy 4
ekoRajty . —iko R4
+ — (8 % 84) /vn Prii(njrrbajs)e + du] . (4.16)

The electric field resulting from the open—current end charge is embedded in the
product €n;i Pl;i(Gnjtybnjz). Thus the vector e,j: appears inside the integral of
Equation (4.15) so that the charge electric field can be isolated and/or removed. The
Limits of integration for Region (II) are

NEEEER
=y & <y <&
zn < < z,

and therefore the integrations ¢ Equations (4.15) and (4.16) can be written as
/vu enjs Plis(Gnjs,bnjs) e B s dy = I I, I‘(n)

/;,11 Prjs(@njsy bnjx) e~ioREs gy — I I In(ll)

where I, and I, are the same as above, and
23 .
/‘  enit Frje(Onjs bujz) eFihore dy

23 o
5 = /., Pr;s (Gnjs s bujs) €707 dz,
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For the evaluation of these integrals, the nn. stion of Appendix A will be utilised,

= BY;,(ani + Bn; 2)

= Q:u'+(aﬂ:' + ﬁn.i z)

= A' +(aﬂ1 +ﬂuJ z)

= Bp;_(an;j + Bn;j 2)

n;-(a'lJ ¥ Bnj 2)

as follows:

Figure A.1(b) Geometry

Bp+ (bnj+)

B:.j+ (au.i-i-) = Clnj+

Q;j-l- (bn.i+ )

Q;j+ (¢n1'+) = Q;j«;- =0

A:-j+ (bu.i+)

A:.j+ (“nj+) = Cznj+
n;- (bm- ) = Cl‘nj—
u,- (“m-— )

an- (bn.i- ) = an_
ni-(@nj-)

As;- (baj-) = Chni-

A (an;-)

= Ap;_(anj + Bnj 2)

Figure A.1(c) Geometry

Biii(bnj+) = Cinjs

Bpji(anj+) = Bpji(an; + Bnjs)

@i+ (Bnj+) = Qnjs

Qri+(8nis) = Qnji(an; + Bnj2)

Arii(bnjr) =Cii

Apis(anis) = Ajji(an; +Banj2)
B;;_(bnj-) = Bp;_(an;+Pnjz2)
By (asj-) = Cf..,_ |

Qni-(bnj-) ni-(anj + Bn; 2)

Qnj-(8ni-) =Qn;- =0

AL (bnj-) = Agj_(anj + Bnj2)

Aj- (anj-)

= Cz.n"_ .
(4.17)

The terms Cj},;; and C3.., are constants with respect to z which result from the

endpoints of segment nj. Similarly, the terms Qrj+ are the charge terms associated

with the open—current at the endpoints of segment nj, and are independent of z. The

charge terms Q;;.(an; + Bnj z) must be removed from the integral for the answer
to be right, but I’m not sure why this is so. Using the definition of e,j; from
Equation (2.54), and P;};;(anj+,bnj+) from Appendix A, along with the notation of

Equation (4.17)

i

C%is S [— B (nj - £1) + ;] I
+ Cnjs S [ifs — jinj(8n;-£1)]

III (4.18)
+ Ol S [~ #2(Clnjs + @ya) + 8ni Chyu | 1
i — I ~ Chja It (4.19)

Crit § [J' (fnj - #2) I
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where ,
+1 if Figure A.1(b) geometry and + integration

or Figure A.1(c) geometry and — integration,
—1 if Figure A.1(b) geometry and — integration

or Figure A.1{c) geometry and + integration,

.

I = [ vihres ik ) co f(am; + Bng2)] d2

L

_ jkocta; —ikoan;
= eikoanj(Bajts) [eJ 5 ’I... + i 3 JI_] (4.20)

I = [ eriurer gielons+ouibait4)gin [ an; + Bng2)]

n

(4.21)

. eikoan; e~ koan;
= ekoanj(fa;ts) - -~
% I, % I

where
Tz Gnjz + Ty Gnjy

Qpjx

Wnj = Fry + Pnj(Bnj - F2) =

I = /:’ eiko(wnjtBnj)s 4,

1
- { 3= if wnj = —Phj

expiko{wn;jtBn;)2a]—expliko (wnjEBnj)n1 .
_'HL_(_.:__.L)T.]JD_(_;_;)_IM prayE ) otherwise

= /" eFiborer 7 = { B A fr.=0

n e jkorsz3]—e jkoraz

Frkors
If it is desired to remove the electric field resulting from the open—current end charge,

then @;;; needs to be removed from Equation (4.18).

otherwise.

4.4 k,>0and k, <0

The only spatial variation of the fields of the planar arrays where k, > 0 is the
exponential term e~/%R%- jngide the double spectral summation of plane waves.

Thus IZ(k, > 0) and IZ(k, > 0) can be expressed as

e=if- | eikoRnt-
X

(ke > 0) = 22’4" 23 (1‘__ e—3B-

Ny Ny rl
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X €nje ,,,_(o du;) / [ (et dy (4.22)
e—ib- jhko R -# -
Tk > 0) = 24,.1, Zz(l—e-iﬁ-) . .o
X (8n; x #_) P2;_(0,dy;) /v o e ibRE- gy, (4.23)

A similar statement can be made about the fields of the planar arrays where k, < 0,
and thus IF;(k,, < 0) and I¥(k, < 0) can be expressed as

etif+ ) R4
X

(ke < 0) = 2424”22( e

L

X eag Pljy(0,dng) [, e B2 dv (4.24)

etibs+ o R4
Im(kw <0)= 2 dvzz( __e+jp+) e

X (Bnj % F4) Pljy (0, dng) [ e 0 do, (4.25)

X
Ts

The integration limits are over the entire Q = 0 lattice cell and are symmetric, i.e.,

vi={ _

y

wit o[l e
IAN A A
IAN IN A
".L" sl o

The integrations of Equations (4.22)—(4.25) can be written as
/;, o e~ Rt gy — LI,

where I, and I, are the same as above and
d fr =
-5 - sin(kor;%)  otherwise.
The electric field of open—current end charges can be isolated and/or removed by
operating on the e,;: Py, (0,dn;) product as outlined in Section A.2.




Chapter 5

Numerical Results

5.1 A 3D Array of Short PEC Dipoles

The first set of data illustrate the convergence of the effective permittivity and the
current shape of a simple artificial dielectric with respect to the number of MM
expansion functions. The dhta also illustrate the ability of the PMM solution to
account for the mutual coupling effects between wire objects in the artificial dielectric.
Finally, it is shown that the effective wavenumber can vary greatly with the direction
of propagation, whereas the effective permittivity is typically independent of the
direction of propagation, provided the current shape does not change very much.

As shown in the insert to Figure 5.1, the geometry of the artificial dielectric
consists of a 3D periodic array of short perfect electric conducting (PEC) dipoles in
a host medium of free space. The dipoles have radius a = 0.001); and length 24 =
0.2),, and are oriented parallel to the z—aﬁs. They are arranged in a lattice structure
where d; = 2h + d and d, = d, = d. For this uniaxial structure, the only non-unity
diagonal element of the permittivity tensor is €, i.e., the solution will have an %
polarized electric current and electric field. The plane wave is propagating in the @i, =
—(§+%)/v?2 direction. The computed relative effective permittivity e, is plotted for
lattice spacing d ranging up to 0.1\ with N = 1,7 and 15 MM expansion functions
for the current on each wire dipole. The N = 1 curve corresponds identically with the
results obtained by Blanchard [21, Ch. 5]. Also, an N = 1 static approximation for
the relative effective permittivity is given. This static approximation is based upon
methods presented by Collin [20, Ch. 12).
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Figure 5.1: Relative effective permittivity versus lattice spacing for a 3D array of
perfectly conducting short dipoles.

Figure 5.2 shows the shape of the normalized current induced on the same 3D
array of dipoles, at the specific value of d = 0.02),, for N = 1,7 and 15. Note that
the PMM solution predicts a rounded off pulse shape for the current, and several MM
PWS expansion functions are needed to accurately model the current. This illustrates
that the moment method solution accounts for a change in shape in the dipole current
caused by mutual coupling effects in the 3D array. In contrast, typically, static
solutions employ a polarizability of the objects. This polarigability is a characteristic
parameter of the objects, and is not influenced by the 3D array {20, Sec. 12.1].
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Figure 5.2: The normalized current induced on the dipoles in a 3D array of perfectly
conducting short dipoles.
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Now consider the 3D array of PEC dipoles in free space shown in the insert to
Figure 5.3. As before, the dipoles have radius a = 0.001), and length 2k = 0.2),.
This time they are arranged in a fixed lattice where d; = 0.25), and dy = d, = 0.05),.
Again, the artificial dielectric is uniaxial, and €, is the only non-unity diagonal
permittivity tensor component. The direction of propagation ii; varies with the angle
6 from 0 to 80°, measured from the z-axis, as indicated in the insert to Figure 5.3.
The data in Figures 5.3 and 5.4 were computed with 7 MM expansion functions.

Figure 5.3 shows the relative effective permittivity ¢, (computed by both tke po-
larization method of Equations (2.32) or (2.38), and the Maxwell’s equations method
of Equation (2.37)) and the normalized effective wavenumber (k. /k;) as a function of
the propagation angle 6. These data illusirate that, in general, the effective permit-
tivity tensor components will be almost constant, whereas the effective wavenumber
can vary quite noticeably with different propagation directions. This is exactly true
for real anisotropic media, and it holds reasonably well for many typical artificial
anisotropic media. See Appendix G for a discussion of the wavenumber predicted by
the ellipsoid of wave normals. Figure 5.4 shows the current shape on the center dipole
for various angles . Note that the magnitude of the current shape is essentially the
same for different propagation direction directions, whereas the phase of the current

shape exhibits a slight odd symmetry about the center of the dipoles.

5.2 Dispersion of a 3D Array of Dipoles

The data in Figure 5.5 illustrate the dispersion characteristics of an artificial dielectric
composed of PEC dipoles. As shown in the insert to Figure 5.5, the dipoles are of
length 2k = 0.6cm, radius a = 0.0lcm, and are arranged in a 3D lattice array
with spacings d; = 0.7cm and d;, = d, = 0.1cm. The dipoles are parallel to the
z-axis, and therefore the electric current and electric field are & polarized. This
artificial dielectric is uniaxial, and the only non-unity diagonal component of the

permittivity tensor is €

zz*

The direction of propagation is along the 2-axis. The
relative effective permittivity €7, is plotted versus frequency for N = 1,5 and 11 MM

expansion functions for the current on each dipole. The frequency varies up to 24
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Figure 5.3: The normalized effective wavenumber (k./k;) and the relative effective
permittivity versus propagation angle 8, for an array of perfectly conducting short

dipoles.
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N
wn

N
o

[
18

Y
o

€ = Relative Eff. Perm.

' Frequency (GHz)

Figure 5.5: Dispersion curve for a 3D array of perfectly conducting dipoles.

GHz, corresponding to a dipole length of 0.481,. At low frequencies, the effective
permittivity approaches a constant value, and the N = 1 solution approaches the
static approximation of Collin [20]. As the frequency increases, the scattered field of
each dipole increases, an-} thus the effective permittivity increases, especially as the
half wavelength resonance of the dipoles is approached.

5.3 Array of Dipoles Oriented at Angle ¢

The data in this section show an example of a simple artificial dielectric that is not
uniaxial, i.e., the effective permittivity tensor has non—zero off-diagonal components.
It is shown that the two eigenfunction solutions (one being a solution with a free
space root k. = ko) are needed to solve for the permittivity tensor. As shown in the
insert sketch to Figure 5.6, the artificial dielectric consists of straight PEC dipoles of
length 2h = 0.2), and radius a = 0.001),.oriented in the direction of the angle ¢.

61




The dipoles are arranged in a 3D lattice array with spacings d, = d, = 0.21) and
d, = 0.01),. The direction of propagation is along the z-axis.

Figure 5.6 shows the normalized effective wavenumber (k./k;) as a function of the
orientation angle ¢, for N = 7 and 15 MM expansion functions. (Recall that another
free space root solution exists, too.) Note that for the indicated effective wavenumber,
the electric dipole moment P? and the average eigenfunction electric field E? are
oriented parallel to the dipoles. The magnetic dipole moment M? vanishes and the
average cigenfunction magnetic field H? is oriented perpendicular to the dipoles in
the zy-plane. Corresponding to the free space root k. = ko, the dipole moments
(P2,M?) vanish and the eigenfunction fields may be written as

E? = %o sin ¢ — §mo cos ¢

3 =%cos¢+Fsing (5.1)

where 7, is the characteristic impedance of free space. Using the current moment and
eigenfunction fields above in Equations (2.32) or (2.37), the polarization method and
the Maxwell’s equations method yield virtually identical results for the permittivity
tensor components, shown in Figure 5.7. Note that the artificial dielectric degenerates

to a uniaxial dielectric when the dipoles are oriented along a principle axis, i.e., when
¢ =0 or ¢ =90°

5.4 Resistive Loaded Dipoles

This data in this section show the effect of resistive loading on a 3D array of dipoles.
As shown in the insert to Figure 5.8, the geometry consists of PEC dipoles of length
2h = 0.2); and radius a = 0.001),, arranged in a 3D lattice with spacings d, =
0.23) and dy = d, = 0.03),. A purely resistive load R, is located at the center
of each dipole. Propagation is in the @iy = % direction, and polarization is in the
X direction. Figure 5.8 shows the relative effective permittivity €5, and effective
loss tangent tan §Z, of the artificial medium versus load resistance for 102 < R, <
100K, for solutions with N = 7 and N = 13 MM expansion functions. Note that
at low resistive loading (R, < 2000) the effective permittivity is close to that for
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Figure 5.6: The normalized effective wavenumber (k./ko) versus orientation angle ¢
for an array of perfectly conducting short dipoles.
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Figure 5.8: Relative effective permittivity and loss tangent for a 3D array of resistive
loaded PEC dipoles.

PEC dipoles of length 24, and at high resistive loading (R, > 10KR2) the effective
permittivity is close to that for two disconnected PEC dipoles, each of length A. The
maximum loss of the artificial medium occurs near R, = 1.5KfQ, corresponding to
the maximum J?R, loss in the load resistance of the dipoles.

Figure 5.9 shows the magnitude and phase of the current shape on the center dipole
for N = 13 MM expansion functions and for load resistances of R; = 10002, 1KQ) and
10Kf). Note that as the load resistance increases, the current at the terminals of the
dipole (at R.) decreases, until for large R;, the dipole is essentially disconnected at
its center, effectively forming two dipoles.
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Figure 5.9: Magnitude and phase of the current on the center dipole at R; = 10012,
1KQ and 10KQ, for a 3D array of resistive loaded PEC dipoles.




5.5 Lossy Dielectric Dipoles

The data in this section show the effects of dielectric loss in a 3D array of dipoles. For
simplicity of dimensions, the data are computed at 300 MHs with a free space host
medium so that Ay =1 meter. As shown in the insert to Figure 5.10, the geometry
consists of lossy dielectric dipoles of length 22 = 0.2); and radius a = 0.001A,,
arranged in a 3D lattice with spacings d, = 0.23); and d, = d, = 0.03X;. The
dipoles have relative dielectric constant ¢;, = 1 and loss tangent tan §;. Propagation
is in the @, = % direction, and polarization is in the X direction. Figure 5.10 shows
the relative effective permittivity €2, and effective loss tangent tan &7, of the artificial
medium versus dipole loss tangent for 10 < tan §;, < 100,000 and for solutions with
N = 9 and N = 15 MM expansion functions. Note that a monopole expansion
function, with its associated open—current end charge contribution, was included at
each end of the dielectric diploles.

Figure 5.11 shows the magnitude and phase of the current shape on the center
dipole at N = 15 MM expansion functions for dipole loss tangent values of tan §, =
50, 500 and 5000. Note that for a low dipole loss tangent, the current is fairly uniform
across the dipoie. As the dipole loss tangent increases, the current shape approaches
that of a PEC dipole.

5.6 Square PEC Loops

The data in this section involves an artificial medium that is slightly magnetic. It
is shown that the eigenfunction current shape on the wire objects can be a strong
function of the direction of propagation. As shown in the insert to Figure 5.12, the
geometry of the artificial medium consists of a 3D periodic array of PEC square loops
arranged in a host medium of free space. The loop wires have radius a = 0.001), and
the sides are of length ! = 0.1)9. The loops are arranged perpendicular to the z-axis
in a lattice structure where d. = d, = 0.12), and d, = 0.02\,. Propagation is in the
i, direction, always in the the yz-plane, measured by the nn,gle 0 from the z-axis. 6
varies from 0° (broadside to the the loops) to 90° (edge-on to the loops). For all the
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data shown in this section, there are 8 MM expansion functions distributed equally
around the square loop.

Figure 5.12 shows the normalized effective wavenumber (k./ko) corresponding to
each of the two roots (see Section 2.3.1) as a function of the propagation angle 8. The
roots were computed by two methods. The first method determines the roots by the
PMM solution. The second method employs a technique from crystal optics known as
the ellipsoid of wave normals (see Appendix G) [23, Ch. 4),{24, Ch. 14]. The ellipsoid
of wave normals uses the roots computed by the PMM for § = 0° and 6 = 90°.
Figure 5.13 shows the magnitude of the determinant of the impedance matrix |Z|
versus the normalized effective wavenumber for propagation angles 6 = 0,15,30,60
and 90°. The roots are indicated by the sharp minima of |Z|. Note the occurrence
of a double root due to symmetry considerations only at § = 0°. Also, note that
the 6 = 90° curve only indicates one root; the other root being a free space root at
k. = ko.

Figures 5.14 and 5.15 show the current shape on the center loop for both roots
1 and 2, respectively, for several propagation angles §. The sketch at the top of
Figure 5.15 shows how the current is plotted in relation to the geometry of the loop.
The phase of the current shape corresponding to root 2 is not plotted because it is
0° for positive z and 180° for negative z. Note that the current shape corresponding
to root 1 changes with propagation angle §, whereas the current shape corresponding
to root 2 does not change with propagation angle. Also, note that at propagation
angle § = 0° the two current shapes are orthogonal to each other, corresponding to
the double root from symmetry. The current shape for root 1 has net electric dipole
moment P° oriented in the z-direction, whereas the current shape for root 2 has P?
oriented in the y-direction.

Figures 5.16 and 5.17 show the effective relative permittivity and permeability
tensor components, respectively, computed as a function of the propagation angle 4.
Observe that this artificial medium is uniaxial. The permittivity tensor components
were computed using both the polarization method of Equations (2.32) or (2.38),
and the Maxwell’s equations method of Equation (2.37). There is good agreement
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Figure 5.12: Normalized effective wavenumber (k./k;) for both roots versus propaga-
tion angle 8, for an array of square PEC loops.
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between the two methods for €7 and €, but not for €;. Note that €,

are solely determined from the root 2 solution, whose current shape does not change
with propagation angle #. On the other hand, €7, is determined solely from the root
1 solution, where the current shape does change with propagation angle 8. This
discrepancy between the two solutions for €, has not been resolved. However, it is
interesting to note one possible major difference between real anisotropic media and
artificial media. In a real anisotropic medium, the permittivity tensor components
will not change with propagation direction. In an artificial medium, the permittivity
tensor components may change with propagation direction since the eigenfunction

currents may change.

5.7 PEC Wire Crosses

The data in this section illustrate the effect of the horizontal cross member on the
dispersion characteristics for an array of PEC wire crosses. As shown in the insert
to Figure 5.18, the wire crosses have vertical extent from y = —L/2 to y = +L/2,
and horizontal extent from z = —L/4 to z = +L/4, with L = 5cm. The horizontal
cross member is located at y = +L/4, and the wire radius is a = lmm. The wire
crosses are arranged in a 3D lattice with d; = 3.75cm, d;, = 7.5cm and d, = lcm.
This artificial dielectric is uniaxial with non-unity values for both ¢;; and 7. The
direction of propagation is along the z-axis. There are 7 vertical expansion functions,
3 horizontal expansion functions, and 1 horizontal to vertical expansion function, for a
total of N = 11. Data are also included for the vertical and horizontal members alone
(arrays of dipoles), as shown in the inserts for the lower two curves of Figure 5.19.
Figure 5.18 shows the dispersion variation of ¢ and ef; for frequencies up to 3
GHz, corresponding to L = 0.5\, for the 3D array of wire crosses. Also, shown are
the dispersion variations of €], for the array of horizontal dipoles, and ¢f;, for the array
of vertical dipoles. Corresponding to the horizontally polarized (X-polarized; wave,
note that € is identical for the array of wire crosses and the array of horizontal
dipoles. The horizontal eigenfunction current is the same for both cases because

the vertical member is symmetrically located with respect to the horizontal member.
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However, for vertical polarization, ¢ is greater for the array of wire crosses than for
the array of vertical dipoles. The horizontal member is not symmetrically located
with respect to the vertical member, allowing for a greater net y—directed current
in the case of the wire crosses. This effect can also be observed in Figure 5.19,
which shows the magnitude of the determinant of the impedance matrix |Z| versus
the normalized effective wavenumber for the array of PEC wire crosses, as well as
for the arrays of vertical and horizontal dipoles, at the frequency of 2 GHz. Note
that the horizontal polarization root does not change from the array of wire crosses
to the array of horizontal dipoles, whereas the vertical polarization root occurs at a
greater effective wavenumber for the array of wire crosses than for the array of vertical

dipoles.

5.8 Graphite-Epoxy 2D Composite Medium

This section presents the analysis of a modern composite material consisting of very
thin graphite fibers embedded in an epoxy host binding material. Figure 5.20 shows
the geometry of this composite material. The graphite fibers are modeled as material
wires of infinite length in the z direction with radius @ = 3.2um, spaced in a square
2D lattice with d, = d; = 7.5um. The conductivity of the graphite fibers is 71.4
K(27!)/meter and the permittivity of the host epoxy material is €or = 2.5. As shown
in Figure 5.20, the PMM solution uses 3 expansion functions; 1 dipole expansion
function and two monopole expansion functions without open—current end charges.
(The charges cancel between adjacent z direction cells.) To model this 2D material,
the z direction lattice spacing was chosen as d, = 75pm.

Figure 5.21 shows the computed dispersion characteristics of the composite ma-
terial. Note that at low frequencies, the effective conductivity is very close to what
results from using a simple fill factor formula based on a ratio of the area occupied by
the graphite fibers to the area occupied by a 2D lattice cell, i.e., for low frequencies,
the effective conductivity is approximately given by .

A!Md o =
== A ! d,d,

4% (5.2)
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Applying Equation (5.2) to the graphite-epoxy composite medium results in 2, =
40.8 K(Q17!)/meter, agreeing very closely with the results of Figure 5.21.

5.9 Dielectric Weave

The data in this section show the dispersion characteristics of the effective permittivity
of a dielectric weave, a geometry which has current that flows between adjacent lattice
cells. As shown in the insert to Figure 5.22, the geometry consists of stacked or
layered square grids of dielectric rods. The dielectric rods have relative permittivity
€r = 10, loss tangent tan §; = 0 or 1, and radius a = 2mm. The grid dimensions are
d; = dy, = L = 5cm, and are spaced & distance of d, = 6mm apart. Propagation is
along the z-axis, and due to symmetry considerations, the medium is uniaxial with
€zx = €, and €] = 1. All data was computed with N = 11 expansion functions,
including 4 monopole expansioh functions to enforce continuity of current between
adjacent lattice cells. Figure 5.22 shows the relative effective permittivity e} = ¢
and effective loss tangent tan§;, = tan§;, of the artificial medium for frequency
varying up to 3 GHz (corresponding to a grid size of L = 0.5)) for dielectric rod
loss tangent values of tan §;, = 0 and 1. Note that the relative effective permittivity
and effective loss tangent are almost constant across the given frequency range. This
is due to the fact that the current is essentially constant in the dielectric rods from

continuity of current between adjacent lattice cells.
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Chapter 6
Computer Program ADWIRS

This chapter presents the usage of the computer program ADWIRS. The program
ADWIRS can analyze an artificial medium composed of a 3D periodic array of
identical arbitrarily-shaped thin conductive or dielectric wire objects arranged in a
homogeneous host medium.  ADWIRS computes such parameters as the effective
wavenumber k. corresponding to the root, the shape of the eigenfunction currents
in the wire objects, the average electric und magnetic dipole moments per unit cell
(P° M?), and the average electric and magnetic fields per unit cell (E?, H?).
Concerning the effective constitutive parameters of the artificial medium, AD-
WIRS only computes the effective permittivity €. as given in Equation (2.41). Note
that this equation for evaluating ¢, is only valid when polarization and direction of
propagation are alorg one of the principle axes. The effective permittivity ¢, can be

written as
.o

e=ee—jt=cle(l-jtaF) (6.1)
where the it = zz,yy or zz, as determined by the principle axis of polarization.
ADWIRS computes the three values €7, tan §; and of;. Often Equation (2.41) does
not apply, and/or the polarization method (Section 2.3.2) and Maxwell’s equations
method (Section 2.3.3) are used to compute the effective constitutive parameters. In
this case, (P%,M?°) and (E®, H?) must be used in another program to be written by
the user, which solves for €. and js, using the polarization method or the Maxwell’s

equations method.
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c 1:
c Rgad (8,*) ConTol,Derr, Ipv,Iwrz, Iwrc, Iqz, Isum, Nmaxz, Nmaxe
c Rgid (8,*) Iswp,Nswpts, Parami,Dparam
c Reid (8,*) PGHz,EpsOr,Tand0,Epserl, Tandel, Epser2, Tande2
o Read (8,*) Np,Ns,Nload
Do ‘N=1
Read (8,%) X(N),Y(N),Z(N)
End Do
C READ 6:
Do N = 1,Ni
Read (8 *) Ia(N),Ib(N),Iloss(N),Radwire(N),Epsrwire(N), Loss
< PORTRAN statements to process Loss >
c End Do
Do N = 1,Nload
Read (8 *}) Iload(N),Zload(N)
End
C
v( ) = 0.0

Rgad (8,*) v(1),v(2)

Rgg? (8,*%) W(1),W(2),W(3)
Rgg? (8,*) D(1),D(2),D(3)
Read (8,*) Uk(1),Uk(2),U0k(3)

Figure 6.1: The .;DWIRS program READ statements.
6.1 Inputs To ADWIRS

The inputs to the computer program ADWIRS are read via 11 unformatted FOR-
TRAN 77 READ statements from an input file on logical unit 8. These READ
statements are shown in Figure 6.1. The values defined in the READ statements are
explained in the sections that follow, along with the type of FORTRAN variable the
input value must be in the input file (Integer, Real or Complex.)

6.1.1 READ 1: Run Control Parameters

ConTol = Convergence test tolerance for the spectral evaluation of the impedance
matrix term contributions Z*, given in Section 3.3, and for the average eigen-
function fields (E®, H®), given in Section 4. Note that all spectral self and mu-
tual impedance terms Z%,, are evaluated to within a tolerance of ConTol. Also,
the average cigenfunction fields (E®, H?) have converged to within a tolerance
of ConTol. If ConTol is set greater than 0.1, then ConTol is automatically




.

set equal to 0.1, so there is never worse than 10% accuracy. Typically ConTol
= 0.01, corresponding to 1% accuracy. (Real)

Derr = Convergence test tolerance for the evaluation of the root k., i.e., the root

search for k. continues until k., is determined to within a tolerance of Derr. If
Derr is set greater than 0.1, then Derr is automatically set equal to 0.1, so
there is never worse than 10% accuracy. Typically Derr = 0.01, corresponding
to 1% accuracy. (Real)

Ipv = Indicator for a 2D planar lattice or a 3D volume lattice impedance calculation.

A 2D planar lattice includes only the k, = 0 planar array of wire objects. A
3D volume lattice includes all the planar arrays indexed by k,, (k, = 0,k, > 0
and k, < 0). (See Section 3.3.) (Integer)

= 1 implies only comppute the 2D planar lattice impedances from the k, = 0
plane of wire objects.

= 2 implies compute the 3D volume lattice impedances from all planar array
indexed by ky (ku = Ojkw > 0 and ky < 0). |

Note that for propagation through a 3D array of wire objects, set Ipv = 2.

Iwrz = Indicator for printing the impedance matrix. (Integer)

= 0 implies do NOT print the impedance matrix.

= 1 implies print the impedance matrix.

Note that setting Iwrz = 1 will result in all the different contributions to the
impedance matrix being printed at each value of k. during the root search

iteration procedure.

Iwrc = Indicator for printing the current solution. (Integer)

= 0 implies do NOT print the current solution.

= 1 implies print the current solution.

Note that setting Iwrc = 1 will result in the current solution being printed for
all possible choices of current coeflicients I, set to unity (see Section 2.2.2).
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Iqz = Indicator for including open—current end charge contributions in the evaluation
of the electric fields and impedance matrix terms. (Integer)
= 0 implies do NOT include open—current end charge contributions.
= 1 implies include open—current end charge contributions.
Note that the user can always set Ipv = 1 to include open—current end charge
contributions and get theoretically correct results. However, including open-
current end charge contributions usually makes the impedance matrix converge
much more slowly, and thus it is recommended to set Ipv = 0 when possible. In
general, the user can set Ipv = 0 ezcept when: 1) open—current end monopole
basis functions exist in the material wire scattering object (for example with
dielectric wires), and 2) these open—current end monopole basis functions do
NOT connect with adjoining monopole basis function from an adjacent lattice

cell (for example with a dielectric weave).

Isum = Indicator for performing an approximate spectral summation on root search
values beyond the initial guess. (Integer)
= 0 implies perform exact spectral summation on all root search values.
= 1 implies perform approximate spectral summation beyond the initial root
search guess.
The user can always set Isum = 0 to obtain a solution. However, setting Isum
= 1 can save considerable CPU time, without much loss in accuracy, when the
initial root guess is close to the final root. Typically, the user can set Ipv =1
and obtain a solution. Then the user should check that the final root is within
a few percent the initial root guess. If not, the user should use the final root of
this solution as the initial root guess of a new solution, and then compute the

new solution.

Nmaxz = Maximum double summation spectral index limit for the evaluation of the
spectral impedance matrix contributions Z*, i.e., n, and n, in Sections 3.3.1
and 3.3.2 shall not exceed Nmaxs, even in the event that all the spectral
impedance matrix terms Z:, have not converged to ConTol by this point.
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Typically, Nmaxs = 50, if no open—current end monopole basis functions exist
in the scattering object geometry. If open—current end monopole basis functions
do exist in the scattering object geometry, then fields converge much more

slowly, and hence Nmaxz = 100 or greater. (Integer)

Nmaxe = Maximum double summation spectral index limit for the evaluation of

the average eigenfunction fields (E?, H®), i.e., n, and n, in Chapter 4 shall not
exceed Nmaxz, even in the event that all the average eigenfunction fields have
not converged to ConTol by this point. The average eigenfunction fields are
much easier to evaluate, and converge more quickly than the spectral impedance

matrix contributions, and hence typically Nmaxe = 20. (Integer)

6.1.2 READ 2: Parameter Sweep Inputs

Iswp = Indicator for what type of a parameter sweep to perform. (Integer)

= —1 implies sweep k., and evaluate impedance matrix determinant only.

= 0 implies no parameter sweep, i.e., evaluate a single solution.

= 1 implies sweep frequency in GHz.

= 2 implies sweep d, (in meters) where d, and d,, remain fixed.

= 3 implies sweep d, (in meters) where d, and d,, remain fixed.

= 4 implies sweep d,, (in meters) where d, and d, remain fixed.

= § implies sweep d,, = d,, (in meters) where d,, remains fixed.

= 6 implies sweep d,, = d,, (in meters) where d, remains fixed.

= 7 implies sweep d, = d,, (in meters) where d, remains fixed.

= 8 implies sweep ¢, = relative permittivity of the host medium.

= 9 implies sweep tan §; = loss tangent of the host medium.

= 10 implies sweep a = radius (in meters) of every wire segment. (All wire
segments are set the same.)

= 11 implies sweep ¢€,, = relative permittivity of every wire segment. (All wire
segments are set the same.)

= 12 implies sweep tané; = loss tax;gent of every wire segment. (All wire

segments are set the same.)




= 13 implies sweep o, = conductivity (in 17!/ meter) of every wire segment.
(All wire segments are set the same.)

Nswpts = Number of points in the parameter sweep. (Integer)
Parami = Initial value of the parameter being varied. (Real)
Dparam = Increment step size of the parameter being varied. (Real)
Note that if an impedance matrix determinant sweep is performed (Iswp = —1)

then the variables Parami and Dparam refer to normalized wavenumber values, i.e.,
k./ko. Also, the effective wavenumber k, must be a purely real value.

6.1.3 READ 3: Frequency, Host Media and Initial Root
Guess

1

FGHsz = Frequency in GHz. (Real)
EpsOr = ¢, = relative permittivity of the host medium. (Real)
Tand0 = tan§, = loss tangent of the host medium. (Real)

Epserl = Initial guess at ¢., = relative effective permittivity, corresponding to the
initial value in the parameter sweep (if Iswp > 0) or at the single computed
value (if Iswp = 0.) (Real)

Tandel = Initial guess at tan §, = effective loss tangent, corresponding to the initial
value in the parameter sweep (if Iswp > 0) or at the single computed value (if
Iswp = 0.) (Real)

Epser2 = Initial guess at ¢, corresponding to the second value in the parameter
sweep (if Iswp > 0.) (Real)

Tande2 = Initial guess at tan §,, corresponding to the second value in the parameter
sweep (if Iswp > 0.) (Real) .




Note that the exact complex permittivity of the host medium is
€ = €or €(1 — j tan &)

where ¢ is the free space permittivity. Also, in the program ADWIRS, the root k.,
is related to the effective permittivity as

k. = w\/poe; where €, = €, (1 —jtané,).

If a parameter sweep is computed (Iswp > 0 in READ 2) then the initial guess at
the first two roots are defined through the input variables Epserl, Tandel, Epser2
and Tande2. The initial guess at subsequent roots is generated automatically within
the program ADWIRS. If only a single value is computed (Iswp = 0 in READ 2)
then the initial guess at the root is defined by Epserl and Tandel. Finally, if an
impedance matrix determinaht sweep is computed (Iswp = —1 in READ 2) then no
initial root guess is required, but Epserl, Tandel, Epser2 and Tande2 must be

input anyway for consistency.

6.1.4 READ 4: Number of Points, Segments and Lumped
Loads

READ statements 4,5 and 6 define the geometry of the wire objects. The method
of wire geometry input used by ADWIRS is too complicated to explain here, but
has been used before and is well documented. The reader is referred to [34], [35]
and/or [36] for a detailed description of the wire geometry input method. The input
parameters are briefly explained below.

Np = Total number of wire points defining the scattering object. (Integer)
Ns = Total number of wire segments defining the scattering object. (Integer)

Nload = Total number of lumped loads defining the wire object. (Integer)

6.1.5 READ 5: Wire Point Coordinates
X(N) = z-coordinate (in meters) of wire point N, for N = 1,2,...,Np. (Real)
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Y(N) = y—coordinate (in meters) of wire point N, for N = 1,2,....Np. (Real)
Z(N) = z-coordinate (in meters) of wire point N, for N = 1,2,...,Np. (Real)
6.1.6 READ 6: Wire Segments

Ia(N) = Endpoint A of wire segment N, for N = 1,2,...,Ns. (Integer)

Ib(N) = Endpoint B of wire segment N, for N = 1,2,...,Ns. (Integer)

Tloss(N) = Indicator for the material composition of wire segment N,

for N = 1,2,...,Ns. (Integer)

= 1 implies the parameter Loss is tan §; = loss tangent of wire segment N.

= 2 implies the parameter Loss is o; = conductivity of wire segment N (in
-1/ meter).

= J implies wire segment N is PEC, and DO NOT use monopole end-modes on
this segment.

= 4 implies wire segment N is PEC, and DO use monopole end-modes on this
segment.

Note that for PEC wire segments, the user should only set Iloss(N) = 4 when
wire segment N physically connects with a corresponding wire segment in an
adjacent lattice cell. This enables the monopole end-modes to account for con-
tinuity of current across lattice cell boundaries when PEC wire segments are
used. For lossy and/or dielectric wire segments (Iloss(N) = 1 or 2) monopole

end-modes are always enabled.

Radwire(N) = a = radius (in meters) of wire segment N, for N = 1,2,...,Ns. (Real)

Epsrwire(N) = ¢, = relative permittivity of wire segment N,

for N = 1,2,...,Ns. (Real)
Note that Epsrwire(N) only has meaning for lossy and/or dielectric wire seg-

ments, i.e., when Iloss(N) = 1 or 2.

Loss = Loss parameter of wire segment N, for N = 1,2,...,Ns. (Real)

= tan §; of wire segment N if Iloss(N) = 1.
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= 0y of wire segment N (in 27!/ meter) if Iloss(N) = 2.
Note that Loss only has meaning for lossy and/or dielectric wire segments, i.e.,
when Iloss(N) = 1 or 2.

6.1.7 READ 7: Lumped Loads
Iload(N) = Location of lumped load N, for N = 1,2,...,Nload. (Integer)

Zload(N) = Complex impedance of lumped load N, for N = 1,2,...,Nload.
(Complex)

Note that wire “location” L is defined as follows:
e by endpoint A of segment L if: L < Ns.
e by endpoint B of segment (L — Ns) if: (Ns + 1) <L < 2 Ns.
6.1.8 READs 8, 9 and 10: Lattice Geometry
V(1) = v, = z2-component of the lattice defining vector ¥. (Real)
V(2) = v, = y—component of the lattice defining vector ¥. (Real)
W(1) = w, = z-component of the lattice defining vector W. (Real)
W(2) = w, = y-component of the lattice defining vector W. (Real)
W(3) = w, = 3-component of the lattice defining vector W. (Real)
D(1) = Lattice spacing (in meters) in the & = X direction. (Real)
D(2) = Lattice spacing (in meters) in the ¥ = v; X + v, ¥ direction. (Real)
D(3) = Lattice spacing (in meters) in the W = w, X + w, ¥ + w, & direction. (Real)

Note that the lattice defining vectors ¥ and W do not need to be normalized to
unit vectors in the input file, only the direction needs to be defined. Also if the lattice
is perpendicular, then set:
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e V(1) =0,

o V(2) =1,

e W(1) =0,

e W(2) =0,

o W(3)=1.

6.1.9 READ 11: Direction of Propagation

Uk(1) = z-component of propagation direction Gx. (Real)

UX(2) = y—component of propagation direction ;. (Real)

Uk(3) = z—component of propagation direction ;. (Real)

‘
Note that the propagation direction defining vector i, does not need to be nor-
malized to a unit vector in the input file, only its direction needs to be defined.

6.2 Output From ADWIRS
6.2.1 The Output File.

The

program ADWIRS writes its output file to standard output on logical unit 6.

This output file inciudes such information as:

1

2.

. Input data and any errors in the input data.
Any errors encountered during the computations.
. The impedance matrix, if requested.

The effective wavenumber k., and the constitutive parameters as calculated by
the simple formula of Equation (6.1).

. The eigenfunction currents, dipole moments per unit cell (P% M®°), and the

average electric and magnetic fields per unit cell (E®, H®).

The CPU times.




6.2.2 The Eigenfunction Solution File.

The program ADWIRS writes the eigenfunction solutions to a file on logical unit
9. This is the file to be used when Equation (6.1) is not valid and the polarization
method or the Maxwell’s equations method is to be implemented by the user. The
data can be read by the following FORTRAN 77 READ statements.

READ (9,*) NSWPTS,NUMMODES
DO I = 1,NSWPTS
READ (9,*) PARAM(I),OMEGA(I)
DO J = 1,NUMMODES
READ (9,*) KE(I,J,1),KE(I,J,2),KE(I1,J,3)
READ (9,%) EPL(I,J,1),EPL(I,J,2),.EPL(I,J,3)
READ (9,*) EPL(I,J,1),BPL(I,J,2),HPL(I,]J,3)
READ (9,*) PO(I,J,1),P0(I,J,2),P0(I,J,3)
READ (9,*) MO(I,J,1),M0(I,J,2),M0(I,3,3)
END DO
END DO

The above variables are defined here.
NSWPTS = the number of points in the parameter sweep.
NUMMODES = the number of MM expansion functions on the wire geometry.
PARAM(I) = the value of the parameter that is being swept at sweep point I.
OMEGA(I) = the angular frequency (in radians / second) at sweep point I.

KE(1,J,1),KE(1,J,2),KE(1,J,8) = the 2,y,z components of the effective wave-

vector at current mode solution J and sweep point 1.

EPL(1J,1),EPL(1,J,2),EPL(1,J,3) = the z,y,z components of E° at current

mode solution J and sweep point I.
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HPL(1,J,1),HPL(1,J,2),HPL(1,J,3) = the z,y,z components of H® at current

mode solution J and sweep point 1.

Po(1,3,1),P0(1,J,2),P0(1,J,3) = the z,y,z components of P? at current mode

solution J and sweep point I.

Mo(1,J,1),M0(1,J,2),M0(1,J,3) = the 2,y,z components of M® at current mode

solution J and sweep point 1.

6.2.3 The Parameter Sweep Files

When a parameter sweep is performed (either a standard parameter sweep, or a
determinant versus k. sweep) then data are output to specific files for plotting. In a
standard parameter sweep run, tabular listings of €7, tan §; and 0%, (as computed by
Equation (6.1)) versus the parameter being swept are written to files on logical units
41, 42 and 43, respectively. In a determinant versus k. sweep, tabular listings of the
absolute value, the real part, and the imaginary part of | 2| versus k./k, are written
to files on logical units 20, 21 and 22, respectively.




Chapter 7

Summary

An artificial medium can be viewed as a macroscopic model of a real medium. Typi-
cally, an artificial medium consists of a large number of scattering objects distributed
in a host medium. For example, the artificial media treatable by the solution in this
dissertation are composed of a 3D periodic array of identical arbitrarily-shaped thin
conductive or dielectric wire objects arranged in the homogeneous host medium. In
general, the wire objects perturb the eigenfunction solution for a plane wave in the
host medium such that a plane wave with a different effective wavenumber propagates
in the artificial medium. Thus, artificial media are characterized by effective consti-
tutive parameters, and in general are anisotropic media. The effective constitutive
parameters can be a function of frequency, the direction of propagation, the sige,
shape, and orientation of the wire objects, and the constitutive parameters of both
the wire objects and the host medium.

The topic of this dissertation is the solution of the plane wave that propagates in
the artificial medium, and the determination of the effective constitutive parameters
from this solution. The solution is obtained by formulating an integral equation
for the plane wave that propagates in the artificial medium. This integral equation
is solved by the periodic moment method (PMM), and yields the complex effective
wavenumber, the eigenfunction currents in the wire objects, and the eigenfunction
fields in the artificial medium.

Three methods are presented for determining the effective constitutive parameters

of the artificial medium. The simplest method employs the effective wavenumber and
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characteristic impedance of the artificial medium, and applies only to uniaxial media
with propagation and polarization along principle axes. The other two methods apply
to general anisotropic media at any direction of propagation. One method enforces the
constitutive relationship equations and the other method enforces Maxwell’s source-
free equations in the artificial medium. Both methods use quantities averaged over
the volume of a lattice cell.

The solution of this dissertation has several distinguishing characteristics setting
it apart from other solutions to artificial media. First of all, no static approximations
are made, and the only limitation on frequency is that the wire objects and lattice
spacing are not too electrically large. This solution satisfies Maxwell’s equations, in
an average sense, inside the artificial medium. Secondly, this solution includes the
mutual coupling effects of the 3D array. Mutual coupling affects the fields acting on
the reference wire object and the current shape in the wire objects. Finally, artificial
media composed of complex wire shapes in a periodic arrangement can be analyzed.

One important property of artificial media is that for a given direction of propaga-
tion, there are two distinct plane wave modes that can propagate without excitation.
Note that for some artificial media, at certain directions of propagation, one or both
of the plane wave modes may be the same as a plane wave in the host medium.
As the direction of propagation changes, the plane wave modes that propagate also
change. This phenomenon is seen by observing that the effective wavenumber for a
plane wave mode of propagation is a strong function of the direction of propagation.
This is also true for real anisotropic media. Also, in a real anisotropic medium, the
permittivity tensor components are independent of the direction of propagation. It
appears that the effective permittivity tensor components, and the current shape on
the wire objects, can be a function of the direction of propagation. Several examples

with numerical results verify these observations.
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Appendix A

The Source Pattern Factor for
PWS Current Functions

This section evaluates the source pattern factor Py;;(a,b) given by Equation (2.59)
for the MM expansion functions. The axial variation along the length of the straight
current elements used in the IMM expansion functions is the piecewise sinusoidal vari-

ation given in Equation (2.18). Inserting this current variation into Equation (2.59),

and integrating, it is obtained that

Prjs(a,b) = Cqjs [A:u':k(b) - A:u'i(“)] (A.1)
where
! -— ' 1
Crit = Ty da(hodog) 11 = (g - F27) (A2)
Ay (z) = eRornte) [i(G; . 34 ) sin(ko 2) — cos(ko 2)] . (A3)

In the event that a = 0 and b = d,;, as in the Region (I) and Region (III) fields, the

source pattern factor simplifies to

Anjz(a) = -1
and

A2;1(b) = et [, - #4) sin(ko dnj) — cos(ko dnj)]
A.1 Source Pattern Factor Limits of Integration

Figure A.1 shows the three primary geometrical arrangements for source current seg-
ment nj. The geometrical arrangement of current segment nj depends upon the 2




(I) | (xII) |(T) ] (II) | (I1II) (I)i (1I) i(m)
' | | | |

z ! z l ' z

— — | | —
|

(a) (b) (c)

Figure A.1: The three geometrical arrangements for a source current segment.

values of its endpoints, which dictate the expressions for the electric ﬁd& and the
corresponding limits of integration for the source pattern factor, Py;;, (a,b).

The arrangement shown in’ Figure A.1(a) has current segment nj located in a
plane parallel to the zy plane. Region (II) has vanished and there are only Region
(I) and Region (III) type fields. Thus, for either case, the limits of integration for
P;;1(a,b) are a = 0 and b = d,;, the length of current segment nj.

 Similarly, for the arrangements shown in Figure A.1(b) and (c), if the field point
is either in Region (I) or Region (III), then the limits of integration are a = 0 and
b = d,;. However, if the field point is in Region (II), then the electric and magnetic
fields consist of both right-going and left-going waves, as given in Equations (2.60)
and (2.63). If the vector from the origin to the field point is R, then the point I’ on
current segment nj of the same 2 value as R can be determined by solving

8 R= 8 [Roy + 1]

for U, resulting in

. 1
VoGt s =g+ s

where R,;. and a,;, are the 2—~components of R,,; and &,;, respectively. Employing
the notation of Equation (2.60), if the current segment geometry is as shown in Figure

100




A.1(b), then the limiis of integration are

anjy = 0

bnj+ = @nj+Pnjz
Gnj- = Qnj+Pnjz
bnj- = dyj.

Similarly, if the current segment is as shown in Figure A.1(c), then the limits of

integration are

Gpj- = 0

baj- = onj+PBnjz
Gnj+ = Qnj+Pnjz
bnj+ = duj.

A.2 Open-Current End Charge Terms

The monopole expansion functions have a discontinuous current distribution in which
the current rises sinusoidally to unity, and then abruptly falls to zero. This resultsin a
charge distribution existing at the open—current end of monopole expansion functions.
These charge terms will cancel when two monopoles are placed together to form a
dipole expansion function, of if monopole expansion functions are used to model
continuous current across adjacent lattice cells. In both these cases, the physical
current is continuous and does not contain charges resulting from an open—current
end.

Since the geometry of interest is a 3D periodic array of wire objects, with MM
current expansions similar (to within a constant) on each wire object, then there
exists a 3D array of charges corresponding to the open—current monopole expansion
functions. It is often desirable to isolate and/or remove the contribution to the
electric field from this 3D charge array. This can be done by rearranging the product
€nj+ Pp;y(a,b), which occurs in the expression for the total electric field of Equation
(2.69), as

€nji Poyi(a,0) = Chjs {[Baje(b) + Q45 (8) — Bjs(a) — Qayala)] #a—
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— [A24(b) - A34(a)] s} (A.4)

where C;,; and A}, (z) are given by Equations (A.2) and (A.3), respectively, and
Byja(2) = M=Onitd (&, - #1) cos(ho 2) + j sin(hoz)] (A5)

and

. - -j lin("oz) jkox(Bn; P4
2(8) = T iy (A.8)

The term @,;.(z) is the contribution to the total electric field from the charge array
located at endpoint z. Thus, Q;;.(z) can be omitted to remove the electric field

resulting from the charge array at endpoint 2. Note that the charge contribution

vanishes when z = 0, corresponding to zero charge at the zero current end z = 0.
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Appendix B
Equivalent Wire Radius

This appendix evaluates a,, the equivalent wire radius, as defined by Newman [25].
Basically, the mutual impedance between two filament line sources separated by the
equivalent wire radius is the same as the mutual impedance between two volumetric
cylindrical current sources, q?rreoponding to the thin material wires.

Consider a 2D case where both the expansion and weighting current sources are
of radius a and are oriented along the z-axis, with §-directed current. The radial

variations are defined as

J.=ClJo(k,p) A /m?

J..,=i2 A/ m?
xa

where the constant C is given in Equation (2.17) so that J, and J,, have unit current.
The mutual impedance between these two current rources was determined by Newman

to be

2, = (noa,‘z)(koa))( k, )(k Tolne) — ke Jl(m).r.,(a,a))_ i

2a k2 — k3 Ji(k,a)] whoa?’
(B.1)

where 1 and kg are the characteristic impedance and wavenumber of the host medium,
and may be complex. Next, Z,, is equated to the mutual impedance between two
filament line sources spaced a. apart from each other, where |ho a.| € 1,i.e.,

Zuo = ZR AP o0 ~ 22 [1 — 2 10k a,) (B.2)
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This expression is solved for a,, resulting in
= Real [“’b i 1)]] (B3)

The real part is taken since a, represents a real physical displacement.
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Appendix C
Stagger of Weighting Monopole

This appendix presents the method of staggering the weighting monopole segment mi.
The rules for staggering the weighting monopole segment mi depend upon the rela-
tive geometrical arrangement of both monopoles segments ms and nj. The weighting
monopole segment mi is staggered by an equivalent wire radius, a,, in a direction per-
pendicular to its centerline, and then the integration is performed along this staggered
monopole. In decreasing order of priority the rules are:

1. If monopole segments ms and nj are both in the same plane, and that plane
is parallel to the zy plane, then monopole segment mi is staggered a distance
of a, in the negative 2 direction. This stagger is not absolutely necessary if
monopole segments mi and nj do not touch or overlap. However, this stag-
ger will increase the convergence of the spectral summation due to the slight
distance of exponential decay for the evanescent waves.

2. If monopole segments ms and nj are collinear and touching, and are paraliel
to the s-axis, then monopole segment ms is staggered a distance of a, in the
negative z direction.

3. If monopole segments mi and nj are collinear and touching, but are neither

parallel to the s-axis, nor parallel to the zy plane, then monopole segment ms
is staggered a distance of g, in the unit direction of the vector fn; X (fn; X £).
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4. If monopole segments mi and nj are touching, but are neither collinear, nor both

parallel to the zy plane, then monopole segment mi is staggered a distance of
a, in the unit direction of the vector &m; Xx &n;.

5. For all other arrangements, monopole segment mi is not staggered at all, and
the integration is performed along its centerline.
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Appendix D

Monopole to Mdnopole
Arrangements

As shown in Figure D.1, there are eight possible geometrical arrangements for the
segment mi to segment nj impedance evaluation. These possible arrangements de-
pend upon the z values of the endpoints of the segments, denoted a8 zmiay Zmidy Znja
and z,j. Conditions on the endpoints are indicated in Figure D.1, where, in general,
endpoint b has a greater or equal z value than endpoint a. The additional criteria for
choosing which case the segment to segment impedance evaluation falls under can be
summarized as:

Case 1: Zmid < Znja

Case 2: Znjp < Zmia

Case 3:  zmia 22Znja 80d  Zmp < Znjb

Case 4: Zmia < Znja and Znja < Zmib < Znjo
Case 5: Zmib > s 80d  Znjo < Zmia < Znjip
Case 6: Zmia < Znja  ANd  Zmp > Zni

Case 7: Zmia < (2Znja = Znjp) < Zmid

Case 8: Znja < (Zmia = Zmid) < Fnjd
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Case 1 Case 5
1 nT 4 zﬂjb
§/JT . 2 -
mi 2nija I z
Zmia b : ia/“/' _-"
zmtb| ! | Zmia |
Zmia S Zmid + 2nja S Znjb Zmia < 2mib + Znja < Znjb
Case 2 Case 6 6
$Zn jb
zn;b 'i z I
a |
Znja nz,m., "{m . ——-
, |
| | Zmib Zmia |  Zmib
Zmia S Zmib 1 2nja S 2njb Zmia < Zmid 7 Znja < Znjb
Case 3 Case 7 ,, .
— T nj " —_— njb
" 4
Znj | z 2
| nja mi | mz znjq,‘ ——l—
I, o | -
|Zmie g | Zmia T Zmap
Zmia < Zmid 1 2nja < 2njd Zmia < Zmid s Znja = 2njb
Case 4 Case 8 | M Az
] n y |z . |
| -~ | mia | -~
. 12nja | z I . z
; m1 | | — B L
mia r—z2., | I !
| “mib | 42Zmip |
Zmia < Zmib ¢+ 2nja < Z2njb Zmia = Zmid ¢+ Znja < Znjb

Figure D.1: The eight possible segment ms to segment nj geometry arrangements.
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Appendix E

The Evaluation of G,,; ,;.(a,b)

This appendix evaluates Gpminji(a,b), defined in Equation (3.32), and used in the
evaluation of the impedance matrix element contribution Z23,,;. In general, Gp; njs(a, b)

requires evaluation when at least a portion of weighting monopole mi is within Region
(II) of expansion monopole nj. To repeat Equation (3.32), Gpinjz(a,b) is defined as

Gminjz(a,b) = /: (€njs * i) Frni(l) 7300 @nit2) P2 (g0 Boia)dl.

The function P,;; (anj+,bn;+ ) is evaluated in Appendix A. Also, the scalar product
(enj+ * @m;) is incorporated into Gpminj+(a,d) so that the contribution from open-
current end charges can be isolated and/or removed. As shown in Figure E.1, the
limits of integration (an;i,bnj+) depend upon the position vector to a point on the
weighting monopole mi, and hence they have an I dependence. For a given value of
l, the integration limits are determined by solving

8- [Rp; +l'dnj] = & - R + liim]

for V', resulting in

= Renis — Rnjs 4 Omisy _
Onjx Onjz
where Rpisy Rnjsy Gmiz and Gnjs are the z—components of Rni, Ryj, dm; and &y,
respectively.
As was shown in Figure A.1(b) and A.1(c), there are two possible arrangements
of monopole nj such that a Region (II) field exists. This results in two different
cases of integration limits for the nj** source pattern factor. For the geometry of

Cmi + Bmil (E.1)
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Figure E.1: Vector relationship for the center Q = 0 monopoles m¢ and nj.

Figure A.1(b), the integration limits are

anj+ = 0
‘bajs = Qmi+Pmil
Gnj- = Omi+PBmil

boj- = dnj

and for the geometry shown in Figure A.1(c) the limits of integration are
Gpj- = 0
b'l.f— = Oami+ ﬂmt’l

Gnj+ = Omi+Pmil
bajs = dj.

110




When substituting P2, (anji,bn;j+) into the defining equation for Gpminjx(a,bd), the
notation of Appendix A will be utilized, as follows:

Figure A.1(b) Geometry Figure A.1(c) Geometry

Bi(bnj+) = Bhjy(ami + Bmil) Bpii(bnjs) =Clnjs

B:uj+(“'u'+) = Cl‘nj-i- B,',J-+(a,._,-+) = By +(a,,,. + Bmil)

Qnj+(bnis) = @Qhji(ami + Bmil) Qni+(bnjs) = Qnjs

Qnis(anjs) =Qh; =0 Qni+(8nj+) = Qnji(ami + Bmil)

ALiv(bnjs) = Ay (ami + Bmil) ALi(bnjs) = Chujy

Arii(aniy)  =0Chit Anii(enis) = Apji(ami + Bmil)

By _(bnj-) = Cfn;- Bhi_(bnj-) = Bp;_(cmi + Bmil)
'lJ-— (anj-) = B:.,- (ami + Bmi 1) n;— (anj-) = Cl.nj— |
Qni-(Bni-)  =Qp,- ni-(bnj-) = 'j-(ams' + Bmil)
ni-(@nj-) = Qni_(ami + Bmil) vi-lanis) =@ =

Ani_(bnji-) = C3,4 Ai_(bnj-) = Ap; (am.' + Bmil)

Ani(ani-) = Api_(ami + Bmil) Ani(anj-) =Ci;.

(E.2)
The terms C},;; and Cj3,;; are constants with respect to z which result from the
endpoints of segment nj. Similarly, the terms @, are the charge terms associated
with the open—current at the endpoints of segment nj, and are independent of I. The
charge térms Qni+(a@mi + Bmil) must be removed from the integral for the answer to
be right, but I’'m not sure why this is so. Substituting F,,;(I) and the above notation
for Py;;(anjs,bnjs) into the defining equation for Gpminjs(a,b), and rearranging,

e~ ko [Bmi—Rn;lrs
Gminjt(a,b) = S Cy;j " (Cis hhs + Cos Iny + Cay I3y ]

where S is given in Equation (4.19), and

Crs = g,{:;m) (8emi - #4) — 3B - i) (fing - F:2)]

A iGN EECRIERI WEN)

Cax = Clnjs (Bmi - 8nj) — (Cl.nj:t + Qn.ii) (8mi - F4)
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Ky = eftoomi(baits)
Lis = [ exp (~gholfimi — Ao - B+) i o(ctms + i )] sin(hol)
b
Is = [ exp(~jkollimi = Bmifng] - ) 608 [ks(@mi + B ) sin (ko) dI
b
Iis = [ exp[—jhol(hms - £2)] sin(hol) di.

Note that the definition of C3: contains the open—current end charge term Qnj:.
This term can be omitted when two monopoles are placed together to form a dipole
expansion function. In this case the charges from the two monopoles will cancel

exactly.

In the evaluation of I3 and I4 it is worthwhile to define

Wit = jko[@mi — Bmifnj] « B+.

4

Also, the trigonometry identiti
sin(A + B) = sin A cos B + cos A sin B

cos(A + B) = cos A cos B — sin A sin B
2sin A sin B = — cos(A + B) + cos(A — B)
2cos A sin B = sin(A + B) — sin(A — B)

are applied to the I;; and I,; integrands to obtain
1. s - 1 (3 c—
Ly = 5 sin(koam) (I3+ — IT7] - 5 cos(koams) (I3 — I7]

Iy = %cos(koa,,,.-) [If - I;:-] + ‘;‘Wﬂ(koam.') [If - Ii-]
where

13+ = [ emomis sinlk(Bni + 1)} di = 1

(@miz P + [ko(Bri + 1)
X [e7m4 (—timis sin[ko(Bmi + 1)8] — ko(Brmi + 1) coslko(Bmi + 1)b]) -

~ €7m4% (i sin[ko(Bmi + 1)a] — Ro(Bmi + 1) coslko(Bmi + 1)a])

o— __ —Wmitl o2 ; - = .
Ir=e ! sin[ko(Bmi — 1)} dl = (Wenia ) + (ko(Brmi — 1)
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X [e"""“*" (—wmis sin[ko(Bmi — 1)b] — ko(Bmi — 1) cos[ko(Bm: — 1)b]) —

— €74 (—wmix sin{ko(Bumi — 1)a] — ko(Bmi — 1) cos{ko(Bmi — 1)“])]
1
(wnu't )2 + [ko(ﬂnu + 1)]2 8

X [e7m® (ko(Bmi + 1) sin [ko(Bimi + 1)b] — Wi conlkoBomi + 1)B]) —
— &4 (ko((Bmi + 1) sin [k (B + 1)a] — s, coalka(Bimi + 1)a])]
$ =] e “mi+ cos j — = -
I = [ emoms! coslho(Bs — 11| & (@miz ) + (FoBoni — DI
x [e7mi%® (ko(Bimi — 1) sin{ko(Bimi — 1)8) — Wi 08 [ko(Brmi — 1)8]) —
— e~ Wmita (ko(ﬂ"" - 1) sin[ko(ﬂ,m- - l)a] — Wit COS[ko(ﬂmn - l)a])]

The above forms of I,,. and I,; are valid as long as 8,,; # 1, in which case

= " emmit! con[ko(Bmi + 1)) dI =

Ir=1r=0 always
b- if Wrnis = 0
I;+=I;'={ o gy
Sy otherwise.

The I3; integral can be evaluated directly as

1
kolL — (Brmi - 2 )]

x [e'j“b(‘“"’*) (=3 (8mi - £+ ) sin(kob) — cos(kob)) —

— e koolbmite) (_j(§,,; - 1) sin(koa) — cos(koa)) —] .

Foe = [ expl-jhol(imi - £4)] sin(hol) di =
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Appendix F

Integration Limits for Evaluatmg
Z2=

mi,nj

This appendix defines the limits of integration over the expansion monopoie nj and
weighting monopole mi, as needed in the evaluation of the impedance term Z73,..
In general, this includes the integration limits for the following terms:

n;— (G'IJ-’ bﬂ.! ) ti(a'm'l’ bm"l)’
Ppii(anjssbnis) Pris(Gmis, bmia)  and
Gmimnjz(Bmiz; Bmiz)-

Recall from Figure D.1 that there are eight possible geometrical arrangements for the
monopole mi to monopole nj mutual impedance contribution Z33,;. Furthermore,

as shown in Figure A.1, there are three primary arrangements for each of monopoles
mi and nj. Each case is analyzed in greater detail below.

Case 1:

As shown in Figure D.1 for a Case 1 geometry, monopole mi is entirely in Region (I)
of monopole nj. The integration limits are

amir =0, bmir = dm;
nj- =0, buj- = dn;

and then P?;_(8nj—,bnj) Prri_(Gmi1,bmir) is evaluated as required in Equation (3.26).

Integration limits: {
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Case 2:

As shown in Figure D.1 for a Case 2 geometry, monopole mi is entirely in Region
(III) of monopole nj. The integration limits are

Omi3 =0, bmis = dmi

anj+ =0, bnjs = dn;

and then P}, (@nj+)bnj+) Pris (Bmi1s bmin) is evaluated as required in Equation (3.27).

Integration limits: {

Case 3:
As shown in Figure D.1 for a Case 3 geometry, monopole mi is entirely in Region (II)
of monopole nj. The integration limits are

Integration limits: { Gmiz2 =0, bmiz = dn;

and then Gpinjs(Gmiz, bmiz) is evaluated as required in Equation (3.31).

Case 4:

As shown in Figure D.1 for a Case 4 geometry, monopole mi is within both Region
(I) and Region (II) of monopole nj. Figure F.1 shows the four different possible ways
that the Case 4 geometrical arrangement can occur. For the integration limits that
follow, it is necessary to define the following terms:

Alim = Bajs=Bmis

. amis _ (F.1)
Bl ko 4

The integration limits for the evaluation of P2._(@nj—,bnj-), Ph;_(Gmi1,bmi1) and
Gminj+ (@miz2s bmiz), 88 required by Equation (3.33), are given in Table F.1.

Case §:

As shown in Figure D.1 for a Case 5 geometry, monopole mi is within both Region
(III) and Region (II) of monopole nj. Figure F.2 shows the four different possible ways
that the Case 5 geometrical arrangement can occur. The integration limits for the
evaluation of Py, (@nj+y8ni+)s Pris(8mizsbmis) 80d Gminjs(Gmiz2s bmiz), as required
by Equation (3.33), are given in Table F.2.
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Case 6:

As shown in Figure D.1 for a Case 6 geometry, monopole ms is within all Regions
(I),(II) and (III) of monopole nj. Figure F.3 shows the four different possible ways
that the Case 6 geometrical arrangement can occur. The integration limits for the

evaluation of PY;_(anj-,bnj-)y Pri—(Gmi1s bmir)s Pajt(@ni+sBnit)s Pris (@mis; bmis) and
Grminjt(Bmiz; dmiz), 88 required by Equation (3.35), are given in Table F.3.

Case T;:

As shown in Figure D.1 for a Case 7 geometry, Region (II) of monopole nj has
vanished, and monopole mi is within Region (I) and Region (III) of monopole nj.
Figure F.4 shows the two different possible ways that the Case 7 geometrical ar-
rangement can occur. The integration limits for the evaluation of Py;_(an;-,bnj-),
Pri—(@mi1,bmi1)s Paji(anj+, bnj-:-) and Py, . (ami3; bmiz), a8 required by Equation (3.36),
are given in Table F.4.

Case 8:

As shown in Figure D.1 for a Case 8 geometry, monopole mi is entirely within Region
(I1) of monopole nj. However, monopole mi has no extent in the z direction, and
Grminjt(@miz2) bmiz) decouples, as given in Equation (3.37). Figure F.5 shows the two
different possible ways that the Case 8 geometrical arrangement can occur. The
following term is required for presenting the integration limits:

Rmis = Rnjs .

Bnjs

The integration limits for the evaluation of P3,;(anj1,bnj+) and Pr;; (Gmiz, bmiz), a8
required by Equation (3.36), are given in Table F.5.

dnjo =
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Figure F.1: The four different Case 4 impedance possibilities.

Table F.1: Integration limits for a Case 4 impedance.
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Table F.2: Integration Limits for a Case 5 impedance.

Figure F.2: The four different Case 5 impedance possibilities.
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(c)

Figure F.3: The four different Case 6 impedance possibilities.

Table F.3: Integration limits for a Case 6 impedance.
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Figure F.4: The two different Case 7 impedance possibilities.

Table F.4: Integration limits for a Case 7 impedance.

Figure F.5: The two different Case 8 impedance possibilities.




Table F.5: Integration limits for a Case 8 impedance.

| [ Figure F.5(s) | Figure F.5(b) |
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Appendix G
The Ellipsoid of Wave Normals

Consider a homogeneous real anisotropic non-magnetic medium arranged such that
the coordinate axes are aligned with the three axial directions (called the principle
dielectric azes) z,y and z. It is shown by Sommerfeld [23, Sec. 4.24] that any real
anisotropic medium can be arranged in such a way. This is a uniaxial medium with
permittivity tensor given by

e 0 0
€&=|0 ¢ 0
0 0 ¢
where ¢,, ¢, and ¢, are called the principle dielectric constants. The fields D and E
are related as
D: = ¢, E.

Dy = ¢E,
D, =¢,E,

The electric energy density is given by
we=gB-D=g (€£+%+g)
Letting C = 8xw,, and writing 2,y and z in place of D,/vC,D,/vC and D,/VC,
and considering these as Cartesian coordinates in space, we get the equation of the
ellipsoid of wave normals
—+=+—=1 (G.1)




This ellipsoid can be used to predict the two phase velocities, and hence the two
wavenumbers of a plane wave propagating in any direction i, as follows [24, Sec.
14.2.3]. Draw a plane normal to @, through the origin. The intersection of this
plane with the ellipsoid is an ellipse. The major and minor semi-axes of this ellipse
are proportional to 1/v,, the reciprocal of the phase velocities. Once the two phase

velocities have been determined, the corresponding wavenumbers can be found as

where w is the angular frequency in radians per second.

These results can be applied to artificial media in the following manner. Consider
an anisotropic uniaxial artificial dielectric. Assume that the effective wavenumber
corresponding to one of the two roots, has been determined for propagation along
two of the principle dielectric axes. For example, for one of the two roots, assume
k. = k. for propagation along the z-axis and k. = k, for propagation along the y-
axis. We wish to compute the effective wavenumber for propagation in any direction
in the zy-plane, i.e., Gy = Xur: + F usy.

See Figure G.1 for the geometrical representation of the solution. The ellipse
equation can be written as 2y
7] + -"‘3 =1. (G.2)
Now, substituting z = a and y = b = atana = a(us/ui:) into Equation (G.2), and
solving, it is obtained that for the given direction of propagation at angle o,

v1+tan‘a
k. = Va? + 8 = k:kv_—-————m. (G.3)
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Figure G.1: The ellipse construction to solve for the effective wavenumber.
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Appendix H
Material Spheres

This appendix presents an integral equation and periodic method of moments (PMM)
[2, 3, 4] solution to the problem of determining the effective permittivity of an arti-
ficial dielectric composed of a 3D periodic array of small identical dielectric material
spheres. Note thai the material presented in this appendix is mostly selfcontained,
i.e., there are few references to material in this dissertation outside this appendix.
However, much of the theory is similar to that presented in Chapter 2, and thus
there is some repetition. The major differences are those necessary to account for the
scattering objects being material spheres rather than wire objects. Also, field com-
putations are made by employing approximations in the space domain, as opposed to
the spectral domain methods presented in Sections 2.4 and 2.5.

As with the method presented in Chapter 2, this method is based upon finding the
complex wavenumber for a plane wave propagating in the artificial dielectric, from
which the complex effective permittivity can be deduced. As before, mutual coupling
between the small spheres is included in the PMM formulation.

The scattering objects are identical dielectric spheres arranged in a 3D periodic
lattice. When a plane wave propagates through an artificial dielectric, currents are
induced on or in the scattering objects. These currents can be viewed as macro-
scopic current moments, analogous to the mit_:roscopic dipole moments induced in the
molecules of an actual dielectric [1]. The effect of the macroscopic current moments
is to produce a net current moment per unit volume, and thus the artificial dielectric
has some complex effective permittivity.
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In the present case, the complex effective permittivity of the artificial dielectric
is a function of the electrical size and spacing of the dielectric spheres, and the ma-
terial parameters of both the host medium and the spheres. By properly choosing
these values, it may be possible to design an artificial dielectric medium of desired
permittivity and loss tangent. A recent application of artificial dielectrics is in the
microwave welding of polymers [11]. In this case, a lossy dielectric of desired con-
ductivity is produced by the proper mixture of HCl doped polyaniline particles in a
polyethylene host.

Section H.1 of this paper presents the integral equation of the artificial dielec-
tric medium. This integral equation is solved by the periodic moment method using
expansion functions suitable for small dielectric spheres. Details concerning the eval-
uating of the impedance matrix are given in Section H.2. Numerical results are
presented in Section H.3, illustyating the complex effective permittivity for different

artificial dielectric compositions.

H.1 Theory
H.1.1 Derivation of the Integral Equation

This section will present the integral equation and PMM solution for a plane wave
propagating through an artificial dielectric medium composed of small dielectric
spheres arranged on a periodic lattice. This solution will yield the complex wavenum-
ber of the plane wave, and in turn, the complex effective permittivity of the artificial
dielectric. Throughout this appendix, all fields and currents are assumed to be time
harmonic with the e’* time dependence suppressed.

As shown in Figure H.1, the geometry of the artificial dielectric consists of a
3D triple periodic array of identical dielectric spheres located in a homogeneous and
isotropic host medium. The spheres have radius a, and are homogeneous with per-
meability and permittivity denoted by (so,€1), and wavenuinber k; = w,/jig€;. The
homogeneous host medium has permeability and permittivity denoted by (uo, &),
wavelength Ao, and wavenumber ky = w,/fio€o. Note that this host medium is not
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Figure H.1: Geometry of a’3D periodic artificial dielectric composed of dielectric
spheres.

necessarily free space and may be lossy. The spheres are arranged in a rectangular
lattice with spacings d.,d, and d, in the X,§ and £ directions, respectively. They are
referenced by the index Q = (¢;, jy, k;) where —oo < (i, jy, k:) < co. The reference
or center sphere is centered at the origin and is indexed by Q = 0 = (0,0,0). Also,
let AQ = 1,d.X+ jyd,§ + k.d,% be the position vector from the origin to the center of
sphere Q. Typically there are a large number of electrically small spheres per cubic
wavelength.

Following the general methods presented by Blanchard and Newman [21, 22], the
effective permittivity of the artificial dielectric medium is determined by first assuming
that a plane wave of unknown wavenumber is propagating through the medium. If
the plane wave is propagating in the i, direction, then it will have spatial variation
of the form

e~ kR (H.1)

where k, = k, fi; is the unknown complex wave-vector, and R = 2% + yy+z28isa
position vector from the origin to the point (z,y,2). For a given direction i, it is
desired to find k. such that this plane wave satisfies Maxwell’s source free equations
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and all of the boundary conditions in the artificial medium, i.e., the normal mode of
propagation for the artificial dielectric medium. Once the propagation constant k.
is known, then the effective permittivity of the artificial dielectric medium is found
through the relationship

kZ
ke =w/oec. or €= P

, (B.2)

where ¢, is the complex effective permittivity of the artificial dielectric medium. Note
that, in general, the artificial dielectric is an anisotropic medium, with different di-
rections i, yielding different values for k., and ¢,. However, since the spheres are
symmetric and closely spaced, the directional variation of ¢, should be negligible.

In formulating the integral equation for the artificial dielectric medium, the volume
equivalence theorem is used to replace the dielectric spheres by the host medium and
the equivalent electric volume polarigation currents 1, Sec. 7.7]

J = jw(e, - &)E*, (H.3)

where E! is the total electric field inside the dielectric spheres. As illustrated in
Figure H.2, the dielectric spheres are replaced by the host medium and the equivalent
volume currents J. This current J, which exists in each and every sphere, is written

I=Y 139, (H.4)
qQ

where JQ is the current in the volume V® occupied by sphere Q. In Equation (H.4)
and others to follow, it is implicit that the summation is over all Q, i.e., —00 <
(3zy3y, *;) < o0. Since we seek a solution to Maxwell’s source free equations, there
are no impressed currents, and thus Et is the electric field of J radiating in the
homogeneous host medium. Equation (H.3) can be rearranged as the homogeneous

equation
J

jw(er — )
and is to be solved for the complex wavenumber k., and the current in the center
Q = 0 sphere, by the PMM.

-E'+ =0 ineach VQ, (H.5)
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Figure H.2: Equivalent te;ruentation for the 3D artificial dielectric of spheres.

Due to the periodic nature of the array of spheres, and of the plane wave of
Equation (H.1), the current is identical in each sphere except for an amplitude and
phase change corresponding to the amplitude and phase of the plane wave at the
center of the sphere. In other words, the current in sphere Q differs from the current

in the center or reference sphere by the complex multiplier
CQ = ¢~ 7k-AQ, (H.6)

As a result, the only unknowns are k. and the current in the center or reference

sphere.

H.1.2 PMM Solution of the Integral Equation

The first step in the PMM solution is to expand the unknown current J as
N
I=Y 1% Y)Y 138, (H.7)
Q Q n=1

where the JQ are N linearly independent expansion functions for the current in sphere
Q, and the I, are N unknown expansion coefficients, with n = 1,2,...,N. Due to

129




the periodic nature of the problem, it is only necessary to match Equation (H.5) over
V9, the volume of the center sphere. Next define N linearly independent weighting
functions in the center sphere, denoted as W, with m = 1,2,..., N. Substituting J of
Equation (H.7) into Equation (H.5), and taking the inner product of the result with
the N weighting functions, reduces Equation (H.5) to an order N matrix equation
which can be written as

(Z+42Z)1I=0. (H.8)

Here [Z + AZ) is the order N impedance matrix and I is the length N solution vector
containing the I, expansion coefficients of Equation (H.7). The impedance matrix

elements are given by (m,n =1,2,...,N)

Znn(k) =Y 0928, = -3 C% [ EQ W, dv (H.9)
Q Q Vo

i

Azmn = 1

jw(er — €) JVa
where EQ is the electric field of JQ, the n** expansion function in sphere Q, radiating

J3°. W, dv, (H.10)

in the homogeneous host medium. The integration limits Vi correspond to the region
occupied by W,,. Although the AZ,,, do not depend on k., the Z,, do, because of
their dependence upon CQ. Note that the AZ,,, terms are non-zero only when the
expansi(m functions JQ are in the reference Q = 0 sphere. Section H.2 discusses the
numerical evaluation of the impedances in Equations (H.9) and (H.10).

The homogeneous matrix Equation (H.8) will have a non-trivial solution only if
the determinant of the impedance matrix is zero. Thus, k. is found by solving the
fundamental equation

|Z(k)+ AZ| =0, (H.11)

usually on an iterative basis.

H.1.3 The MM Expansion and Weighting Functions for
Small Spheres

In this section, MM expansion and weighting functions suitable for electrically small
spheres are defined. For spheres of arbitrary size, the sphere eigenfunctions (37)
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form a reasonable set of expansion functions. However, for electrically small spheres
(8 € Xo), the shape of the current in a given sphere is very close to the lowest order
cigenfunction current for an isolated sphere of the same radius and permittivity in
the homogeneous host medium. Essentially, the higher order terms, which drop off as
higher powers of |kya| are being ignored, and only the lowest order eigenfunction cur-
rent is retained in each sphere. A Galerkin PMM solution is employed with weighting
functions chosen identical to the expansion functions in the center sphere. For N =1
expansion function, the fundamental equation, Equation (H.11) reduces to

Zn(k.) + AZy; =0, (H.12)

i.e., the self impedance of the single expansion function is zero.

The expansion function is defined by illuminating the isolated center sphere with
an X polarized plane wave propagating in the +z direction (i, = &), and with the
incident electric field

E' = geihor, (H.13)

J?, the n = 1 expansion current in the Q = O sphere, is the current induced by this
incident field in the isolated center sphere. This current is given by [37]

3 = 6, [aim{) + jbiny)] , (H.14)

where af and b are the eigenfunction expansion coefficients, and m,(,ll)l and ng)l are
the appropriate spherical vector wavefunctions inside the sphere. C, is an arbitrary

normalization constant chosen here such that
/v ° NWdv=0, /;, o [aimg)l + jbing),] dv =1x (Am). (H.15)

The eigenfunction coefficients can be written as

ot o ;,(po)rtg’go)—hsz)(po)j?(po) (H.16)
J1(p1)hg *(po) — sy~ (po)jo(pr)
" " po)iopo) — 1 (po)8" pn) (B.17)

" 5P (po)is(e1) — s (e )W (o) + (222) s (pr)B (o)
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where j.(-) and A?)(:) are n** order spherical Bessel and spherical Hankel functions
of the second type, respectively, po = koa, o1 = k16 and & = €;/¢y. Denoting p = kyr
where r is the radial distance from the center of the sphere, the spherical vector

wavefunctions inside the sphere can be written as
m{} = ji(p) [cos ¢ 9 — cos 0sin ¢ 4] (B.18)

o)) = % [271(p)sin O cos ¢ # + [pj(p)) cos B cos & + [pis (p))'sing 4| ,  (H.19)

where the prime ’ denotes differentiation with respect to p = k7, and 6 and ¢ are the
usual spherical angle coordinates. Note that the expansion function J 9 in sphere Q is
identical to the expansion function J¥ in the center sphere except for the translation
AQ.

H.2 Evaluation of the Impedance Matrix

This section describes the numerical evaluation of the impedance matrix element
[211 + AZ,,) of Equations (H.9) and (H.10) using the expansion and weighting func-
tion given in Section H.1.3. For simplicity, the direction of propagation, @, of Equa-
tion (H.1), is assumed to be in the yz plane. Thus, the complex multiplier of Equa-
tion (H.6) does not depend on the z lattice spacing index s,, and is written as

CR = ¢ kelivdycosbthodasing) (H.20)

where ¢ is the angle between G, and the y-axis.

As indicated by Equation (H.9), Z, is obtained by summing Z3, weighted by the
multiplier C'Q, for every expansion current, J?, in the infinite 3D periodic array. Zﬂ
is the mutual impedance between expansion function J@ in sphere Q and weighting
function W, = J? in the center sphere. In order for the triple sum of Equation
(H.9) to converge absolutely, the mutual impedances, ZIQI, must drop off with radial
distance r more rapidly than 1/r3. This is not the case, since for large r the field EQ
(and thus Z3) drops off only as 1/r. However, due to cancellations caused by the
oscillatory behavior of CQ and Z3, the triple sum does converge, although its rate
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of convergence is very slow. Thus, some method is desired to quickly evaluate this
slowly convergent summation.

Many techniques, based upon mathematical identities such as the Poisson sum
formula, have been presented to accelerate the convergence of a series [20, 38). Here
we present a method which is based more upon physical reasoning than mathematical
identities. The method is based upon the assumption that the dielectric spheres are
electrically very small and are on a lattice spacing which is electrically very small. The
method employs increasingly crude approximations as the distance from sphere Q to
the center sphere increases. As illustrated in Figure H.3, the spheres are classified as
being in one of the following three regions:

Region 1: (R,;) includes only the Q = O or center sphere. It combines the Z} and
AZ,, terms which have the largest and most important contribution to the

impedance sum, and its contribution is evaluated exactly.

Region 2: (R;) includes the first several columns of spheres adjacent to the z-axis.
As illustrated in Figure H.3, R; includes spheres in the rectangular cylinder:

=N, <k < N,, "Ny < jv < Nm —00 < iz < 00, (H'zl)

where N, and N, are typically on the order of 8, and it is understood that the
Q = 0 or R, sphere is omitted. For R;, two approximations are made. First,
the fields of J are approximated by the fields of an infinitesimal dipole of the
same unit current moment. Second, the weighting function W), is approximated
by a Dirac delta function of the same current moment located at the center of
the center sphere. Basically, the Galerkin weighting function is being replaced
by point matching.

Region 38: (R;) includes all remaining spheres external to R;. As discussed above,
it is practically impossible to directly sum the impedances associated with the
Ry spheres to convergence. This is especially true if k. is complex, since in
this case the CQ in Equation (H.20) will ezponentially grow as (j,, k,) increase
in magnitude. To avoid this problem, the currents in the R; spheres will be
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approximated by a continuous current whose field can be easily found in closed

form.

Asin R, the fields of the expansion functions J,Q in R are approximated by the
fields of infinitesimal dipoles of the same unit current moment, and the Galerkin
weighting is approximated by point matching. Since the separation between the
spheres is electrically very small, and since the distance from a R; sphere to the
origin (field point) is at least several lattice spacings, the infinitesimal current
elements in R; can be approximated by a continuous volume current density,
Jc, with the same current moment per lattice cell. As described below, the
fields of J¢, which exists only in Rj, are evaluated as the fields of J¢ in all
space minus the fields of Jc in R, + R;. The fields of Jc in all space are
known in simple closed form, and the fields of J¢ in R; + R; are evaluated by a
relatively fast double nunferical integration over R, + R;. Essentially, the triple
sum to infinity is replaced by this finite double numerical integration.

Combining the contributions from the three regions defined above, the nngle term

impedance matrix element can be written as
22+ AZ,,~2Zp+2Zr2+ Zps where

Zp = (Zfl + AZu)

Ns

Zro=— Y. §'; c® f: 'E.,(AQ)

ky=—Ny jy=-Ny Sg=—00
Zr3 = —Ecs, (H.22)
where E;.(AQ) is the z component of the electric field of the infinitesimal dipole
located at AQ approximating J?, and Ec, is the z component the electric field of
the continuous current distribution J¢ in R3. In both cases, the currents are radiating

in the homogeneous host medium and the field point is at the origin. The prime on
the triple summation indicates that the Q = O center term is omitted.
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Figure H.3: Top and side views showing the different current regions and approxima-
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The Region 1 Term

The self impedance contribution, Zg,, is the contribution from J?, the expansion
function in the Q = O center sphere, and includes both Z?, and AZ;,. Inside the
center sphere, EY, the field of J?, is found by subtracting the incident field from
the total field in the eigenfunction solution (37]. The total field is approximated by
the lowest order eigenfunction term, but the incident field has an infinite number
of terms of slowly decreasing strength. However, due to the orthogonality of the
wavefunctions when integrated over the center sphere’s volume V?, only the lowest
order term contributes in the integration for ZJ). Carrying out this operation, and
also performing the integrations of Equations (H.9) and (H.10), Zg, is evaluated
exactly as

Zm = (20 + Azu) )[a,A..., 5 B

jw (fn
A klsmplcospo—kocosp]nnpo_nnp;unpo
= 3”0"1 L k? - kg kopr
By = 8 l:osin,olcospo-lelcoamsinpu_cosmc:ospo4
it 3kok; ki — k3 kopr M
koainplcospo+k1cosplsinpo_sinplsinpo (H.23)
k3pt kopopi

Region 2 Terms

For a sphere in R;, the expansion function J ? is approximated as an infinitesimal
dipole of the same unit current moment located at the center of sphere Q. Using the

well known expressions for the electric field of an infinitesimal dipole [39], we obtain

N; Ny oo /
Y Y 0?3 Eu(AQ) (B.24)
ki==N, jy=-Ny  is=-o

' (,-;, : (,.,;,,),)] @29

where a is the angle between AQ and the z-axis, and r = |AQ)|.
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In evaluating the innermost summation of Equation (H.24), the field E;,(AQ) is
summed for —oo < i, < oco. This inner sum is the contribution from the column of

dipoles indexed by (j,,k;), and the details of this evaluation are given below.

Column of Dipoles Summation

This section evaluates the contribution to Zg, from a column of infinitesimal dipole
current elements indexed by (5, k;), i.e., it presents the evaluation of
0o !

Zi = 3 Ew(AQ), (H.26)
where Es;(AQ) is given by Equation (H.25) and the’ indicates that the i, = 0 term is
omitted if j, = k, = 0. Experience shows that Equation (H.26) is a slowly converging
sum, and simply summing to convergence significantly increases the total CPU time.
The method presented here llbegins by directly summing terms for which |i.| is not
very large. Since the spacing d, between dipoles is electrically small, for large |s|, the
discrete array of infinitesimal dipole currents are approximated as a continuous line
current distribution of the same current moment per unit length. The field of this
continuous current distribution is determined by an asymptotic integration extending
to infinity, which can be approximated in closed form.

From symmetry, the mutual impedances of the spheres at z = +i.d; contribute
equally to Equation (H.26), and thus the sum in Equation (H.26) can be reduced to
only positive values of i.. Z** can now be written as

. Na 9 foo
23 = Eu($ipdy + 8had) +2 3, Eu(AQ) + - [ Eu(aQ)de,  (m21)
where N, is the number of terms (dipoles) that are directly summed, and z, =
(N, + %) d. is the z coordinate of the bottom of the line current approximating the
dipoles N; < i; < co. In Equation (H.27), the first term is the i; = 0 term. It is
understood that this term is omitted for the j, = k, = 0 column of dipoles since it is
the R; self impedance term that is evaluated separately.

The tail end contribution to Z’s*:, given as the integral in Equation (H.27), is

evaluated asymptotically. Assuming N, is chosen large enough that z, » p =
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\/(j,d,)"' + (k,d,)?, the radial distance r = |AQ)| is approximated simply as z. Thus,
cosa ~ 1 and sina ~ p/z. Making these substitutions into Equation (H.25), the
integral contribution becomes

s 2 () s (- g

%)+ ()

where the integrals I, for p = 1,2,...,5 are defined as
- ] e"jb‘

I’ = xe 2P

(H.29)

The p = 1 integral can be evaluated by replacing the exponential by its Taylor series
expansion and integrating term by term, yielding

e[ 1 2 6 2
h= jkoza [ - Jkoza + (Fkoza)? - (Gkoza)? + (7koza)* - ] (H.30)
The remaining integrals are evaluated through the recursion relationship
1 e’j"O‘- ]
5= ;—_1[ e ‘-7"°IH]- (H.31)

Region 3 Terms

For Rj, the total currents in the spheres are approximated as the continuous volume
current J¢. J¢ includes the e~7%«R variation of the plane wave in Equation (H.1),
ie.,

Ic = %Jc = KCyeikelvoosdtsaing) iy By (H.32)

where C, is a normalization constant such that J¢ has unit current moment in each
lattice cell.

If Jc existed throughout all space, instead of only in R, then its electric field
could be found directly from Maxwell’s equations as simply

o _JWiho
XCzkg — kg.
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To find the field of J¢ in Rj, it is necessary to subtract the contribution from that
portion in R, and R;, yielding

. 2
W
o= b= -oife - B[ P

where the integration is over the region R; + R; in the yz plane (where J¢ is zero),
p = VyT+ 22 and HP(k -) is the cylindrical Hankel function of the second type.

H.3 Numerical Results

This section presents numericai results based upon the above PMM analysis of an
artificial dielectric composed of small dielectric spheres. The data will include the
root of ‘he fundamental equation, as well as the relative effective penhittivity and
loss tangent for different o *iicial dielectric compositions. In all cases, the direction of
propagation is fi; = %, the pdlarization of the electric field is %, and the host medium
is free space.

The first set of data illustrates the root of the fundamental Equation (H.12) for
the effective wavenumber in the complex k. plan.e. The geometry of the artificial
dielectric consists of spheres of radius 0.0025\, spaced in a cubic array where d; =
d, = d, = 0.01)9. The spheres have relative permittivity €;, = 10 and loss tangent
tan §; = 1. Figure H.4 shows the magnitude of Z;,(k.) + AZ,, (i.e., the magnitude
of the determinant of the order N = 1 matrix) along several lines in the complex
k. plane parallel to the Re(k.) axis, as illustrated in the insert to the figure. The
root is the value of k. such that |Z,; + AZ;;| = 0. From Figure H.4 this occurs at
k./ko ~ 1.086—10.0125. Using Equation (H.2), this corresponds to a relative effective
permittivity of e, = 1.18 with effective loss tangent tané. = 0.023. Note that the
effective permittivity of the artificial dielectric is between that of the host medium
and the dielectric spheres.

The insert in Figure H.5 shows an artificial dielectric in which the dielectric spheres
have relative permittivity €;, = 4 with loss tangent tan §; = 1.. The relative effective
permittivity and effective loss tangent are plotted for sphere radii of a = 0.002, 0.01
and 0.02),, as a function of cubic array lattice spacings d,. = d;, = d, varying frvm 2a
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Figure H.4: Contours of |Z;; + AZ),| in the complex k. plane, for a 3D array of
dielectric spheres.
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Figure H.5: Effective permittivity versus array lattice spacing, for a 3D array of
dielectric spheres.

to 0.1X. As the lattice spacing increases, the fraction of the volume occupied by the
spheres decreases, and the complex permittivity of the artificial dielectric approaches
that of the host medium.

The insert in Figure H.6 shows an artificial dielectric in which the dielectric
spheres have radius a = 0.0025),, and are arranged in a cubic lattice of spacing
d. = d, =d, = 0.01). The relative effective permittivity and loss tangent are shown
as a function of sphere loss tangent, tan §;, varying from 0 to 10, for sphere relative
permittivities of ¢, = 3, 10 and 30. Note that the relative effective permittivity
increases, whereas the effective loss tangent decreases, with increasing ¢;,,. When
tan §; = 0, the spheres are lossless, and thus the artificial dielectric is also lossless

141




.22 v Ll T T ¥ T T T L T T T L T T T T LB

Ee'r

tan o,
O O O O © O O B |4 B B B (= = =

.00 PR SR S T SR WY TR VRN S SN SR N SR N PR SR
0 2 4 6 8 10

tan 0,

Figure H.6: Effective permittivity versus sphere loss tangent, for a 3D array of di-
electric spheres.

with tan§, = 0. As tan §, increases, tan §, increases, reaches a peak, and then falls

to zero as tan §, — oo.

H.4 Summary

This appendix has presented an integral equation and PMM solution to determine
the effective permittivity of an artificial dielectric composed of a 3D periodic array
of homogeneous dielectric spheres in a homogeneous host medium. The effective per-
mittivity is determined by finding the complex wavenumber, k., for a plane wave
propagating in the artificial medium. The method can compute the effective permit-

142




tivity of the artificial dielectric as a function of frequency, direction of propagation,
and the size, material composition, and density of the dielectric spheres.
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